UNDERSTANDING D_{0} ET AL. by combining results from Lattice QCD, EFTs and Experiment

April 19, 2024 | Christoph Hanhart | IKP/IAS Forschungszentrum Jülich

SETTING THE STAGE: XYZ ET AL.

SETTING THE STAGE II: D-MESONS

Quark Modell: M. Di Pierro and E. Eichten, PRD 64 (2001) 114004
The solution provides crucial information about the nature of these states

HADRONIC MOLECULES

- are few-hadron states, bound by the strong force
- do exist: light nuclei.
e.g. deuteron as pn \& hypertriton as $\wedge d$ bound state
- are located typically close to relevant continuum threshold; e.g., for $E_{B}=m_{1}+m_{2}-M$ and $\gamma=\sqrt{2 \mu E_{B}}$
- $E_{B}^{\text {deuteron }}=2.22 \mathrm{MeV}$
($\gamma=45 \mathrm{MeV}$)
- $E_{B}^{\text {hypertriton }}=(0.13 \pm 0.05) \mathrm{MeV}$ (to $\left.\wedge d\right)$
($\gamma=13 \mathrm{MeV}$)
- can be identified in observables (Weinberg compositeness):

$$
\frac{g_{\mathrm{eff}}^{2}}{4 \pi}=\frac{4 M^{2} \gamma}{\mu}\left(1-\lambda^{2}\right) \rightarrow a=-2\left(\frac{1-\lambda^{2}}{2-\lambda^{2}}\right) \frac{1}{\gamma} ; \quad r=-\left(\frac{\lambda^{2}}{1-\lambda^{2}}\right) \frac{1}{\gamma}
$$

where $\left(1-\lambda^{2}\right)=$ probability to find molecular component in bound state wave function
$\rightarrow r \gtrsim 0$ for molecule; $r<0 \&|r| \gg$ range of forces for compact state

DISCLAIMERS AND OUTLINE

The method presented is 'diagnostic' - especially,

- it does not allow for conclusions on the binding force;
- it allows one only to study individual states;
- quantitative interpretation gets lost when states get bound too deeply ('uncertainty' $\sim R \gamma$)

To go beyond tailor made effective field theories needed

In this talk I present how a unitarized chiral theory (UChPT) can be applied to Goldstoneboson D meson scattering and allows for a simultaneous study of experimental and lattice data to reveal the nature of $D_{s 0}^{*}(2317) \& D_{0}^{*}(2300)$ and quantify the implications for other observables

CHIRAL LAGRANGIAN (1)

- The leading order Lagrangian (no free parameters)

$$
\mathcal{L}_{\phi P}^{(1)}=D_{\mu} P D^{\mu} P^{\dagger}-m^{2} P P^{\dagger}
$$

with $P=\left(D^{0}, D^{+}, D_{s}^{+}\right)$for the D mesons, and the covariant derivative

$$
\begin{aligned}
D_{\mu} P & =\partial_{\mu} P+P \Gamma_{\mu}^{\dagger}, \quad D_{\mu} P^{\dagger}=\left(\partial_{\mu}+\Gamma_{\mu}\right) P^{\dagger} \\
\Gamma_{\mu} & =\frac{1}{2}\left(u^{\dagger} \partial_{\mu} u+u \partial_{\mu} u^{\dagger}\right)
\end{aligned}
$$

where $u_{\mu}=i\left[u^{\dagger}\left(\partial_{\mu}-i r_{\mu}\right) u+u\left(\partial_{\mu}-i \mu_{\mu}\right) u^{\dagger}\right], \quad u=e^{i \lambda_{a} \phi_{a} /\left(2 F_{0}\right)}$

- this gives the Weinberg-Tomozawa term for $P \phi$ scattering:

$$
\propto E_{\phi}+\mathcal{O}\left(1 / M_{D}\right) \quad(S-\text { wave })
$$

Interaction of kaons significantly stronger than that of pions

CHIRAL LAGRANGIAN (2)

- At the next-to-leading order p^{2} (6 free parameters)

F-K Guo, CH, S. Krewald, U.-G. Meißner, PLB666(2008)251

$$
\begin{aligned}
& \mathcal{L}_{\phi P}^{(2)}=P\left[-h_{0}\left\langle\chi_{+}\right\rangle-h_{1} \chi_{+}\right.\left.+h_{2}\left\langle u_{\mu} u^{\mu}\right\rangle-h_{3} u_{\mu} u^{\mu}\right] P^{\dagger} \\
&+D_{\mu} P\left[h_{4}\left\langle u_{\mu} u^{\nu}\right\rangle-h_{5}\left\{u^{\mu}, u^{\nu}\right\}\right] D_{\nu} P^{\dagger} \\
& \chi_{ \pm}=u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u, \quad \chi=2 B_{0} \operatorname{diag}\left(m_{u}, m_{d}, m_{s}\right)
\end{aligned}
$$

- Low-energy constants:
$h_{1}=0.42$: from $M_{D_{s}}-M_{D}$
Same effective operator leads to strong isospin violation
$m_{D^{+}}-m_{D^{0}}=\Delta m^{\text {strong }}+\Delta m^{\text {e.m. }}=((2.5 \pm 0.2)+(2.3 \pm 0.6)) \mathrm{MeV}$
h_{0} : from quark mass dependence of charmed meson masses (lattice)
$h_{2,3,4,5}$: fixed from lattice results on scattering lengths calls for unitarisation \Longrightarrow UChPT

UNITARISATION

ChPT is only perturbatively consistent with unitarity.
Observe $\operatorname{Im}(t(s))=\sigma(s)|t(s)|^{2}$ implies $\operatorname{Im}\left(t(s)^{-1}\right)=-\sigma(s)$
\Longrightarrow write subtracted dispersion integral for $t(s)^{-1}$
\Longrightarrow fix $\operatorname{Re}\left(t(s)^{-1}\right)$ by matching to ChPT
Effectively this gives

with ChPT expression for V ... and additional parameter a(μ) (from the loop)
Dependence on unitarization method needs to be clarified!

FIT TO LATTICE DATA

fit LECs to lattice data for $a_{D_{x} \phi}^{(S, /)}$ in selected channels
$\Longrightarrow 5$ parameters: $h_{2}, h_{3}, h_{4}, h_{5}$ and $a(\mu)$

controlled quark mass dependence
Fit range up to
$M_{\pi}=500 \mathrm{MeV}$

- $\pi / K / \eta-D^{(*)} / D_{s}^{(*)}$ scattering fixed
- $D_{s 0}^{*}(2317)$ emerges as a pole with $M_{D_{s 0}^{*}}=2315_{-28}^{+18} \mathrm{MeV}\left(E_{b}=47_{-18}^{+28}\right)$; since $E_{b}\left(D_{s 0}\right)=E_{b}\left(D_{s 1}^{*}\right)+O\left(1 / M_{D}\right) \Longrightarrow$ puzzel 2 solved

INTERPRETATION A LA WEINBERG

$$
\begin{aligned}
& D_{\text {s0 }}^{*}(2317): a=\mathrm{g}_{\text {eff }} \quad \mathrm{g}_{\text {eff }}+\mathcal{O}(1 / \beta) \simeq-\left(\frac{2\left(1-\lambda^{2}\right)}{2-\lambda^{2}}\right) \frac{1}{\gamma} \\
& \Longrightarrow a=-(1.05 \pm 0.36) \mathrm{fm} \text { for molecule }\left(\lambda^{2}=0\right) \text {; smaller otherwise }
\end{aligned}
$$

Various lattice studies show under binding
study a γ (removes E_{b} dep.)
All analyses consistent with purely molecular $D_{s 0}^{*}(2317)$ (analogous for $D_{s 1}(2460)$)
\Longrightarrow puzzel 1 solved

EXP. TEST: HADRONIC WIDTH

Genuine contribution:

Specific for molecules:

F.K. Guo et al., PLB666(2008)251; L. Liu et al. PRD87(2013)014508; X.Y. Guo et al., PRD98(2018)014510
and, e.g., P. Colangelo and F. De Fazio, PLB570(2003)180
Experiment needs very high resolution \rightarrow PANDA
Predict $M_{B_{s 0}^{*}}=5722 \pm 14 \mathrm{MeV}$ and various decays
Fu et al., EPJA58(2022)70
Most recent lattice result: $M_{B_{s 0}^{*}}=5699 \pm 14 \mathrm{MeV}$
Next: Study multiplet structure from GB-D-meson scattering

THE S = 0 SECTOR

Keeping parameters fixed one gets:

Poles for
Albaladejo et al., PLB767(2017)465; Lattice: Moir et al. [Had.Spec.Coll.] JHEP10(2016)011

- $M_{\pi} \simeq 391 \mathrm{MeV}:(2264, \quad 0) \mathrm{MeV}[000]$ \& $(2468,113) \mathrm{MeV}[110]$
- $M_{\pi}=139 \mathrm{MeV}:(2105,102) \mathrm{MeV}[100]$ \& $(2451,134) \mathrm{MeV}[110]$ Questions $c \bar{q}$ nature of lowest lying $0^{+} D$ state, $D_{0}^{*}(2300)$

POLE STRUCTURE FROM LATTICE STUDY

Lattice study reported only bound state pole
Moir et al. [Had.Spec.Coll.] JHEP10(2016)011
Second pole was present, but location depends on amplitude model

- Poles located on hidden on sheet
A. Asokan et al., EPJC83(2023)850
- Pole locations correlated; in line with pole from UChPT
- Distance to threshold balanced by size of residue

Explains correlation between $\mathrm{Re}($ pole) and Im (pole)

SU(3) STRUCTURE FROM UCHPT

$$
m(x)=m^{\mathrm{phy}}+x\left(m-m^{\mathrm{phy}}\right)
$$

$$
m_{\phi}=0.49 \mathrm{GeV} ; M_{D}=1.95 \mathrm{GeV}
$$

Multiplets: $[\overline{3}] \otimes[8]=[15] \oplus[6] \oplus[\overline{3}]$

\because
with [15] repulsive,
[6] attractive,
[3] most attractive

- 3 poles give observable effect with $\mathrm{SU}(3)$-breaking on
- At $S U(3)$ symmetric point $m_{\phi} \simeq 490 \mathrm{MeV}$: 3 bound and 6 virtual states
- The light $D \pi$ state is the multiplet member of $D_{s 0}^{*}(2317)$

$$
\Longrightarrow \quad M_{D_{s 0}^{*}(2317)}-M_{D_{0}^{*}(2100)}=217 \mathrm{MeV}
$$

SU(3) STRUCTURE

- Lattice shows repulsion in [15] as predicted in UChPT

\square

Albaladejo et al., PLB767(2017)465

- States in [6] found in UChPT and lattice:
- $S=-1$

- $S=0$: Lattice finds virtual pole in [6] @ $M_{\pi} \approx 600 \mathrm{MeV}$ in line with UChPT prediction

Gregory et al., [arXiv:2106.15391 [hep-ph]]+Lüscher analysis.
Confirmed by J.D.E. Yeo, C.E. Thomas and D.J. Wilson, [arXiv:2403.10498 [hep-lat]].

- Quark Model: $[\overline{3}] \otimes[1]=[\overline{3}]$ — the $[6]$ is absent

OBSERVABLE: $B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$

With ϕD amplitude fixed we can calculate production reactions:

for the S-wave (two free para.); other partial waves from BW-fit

$\left\langle P_{0}\right\rangle \propto\left|\mathcal{A}_{0}\right|^{2}+\left|\mathcal{A}_{1}\right|^{2}+\left|\mathcal{A}_{2}\right|^{2}, \quad\left\langle P_{2}\right\rangle \propto \frac{2}{5}\left|\mathcal{A}_{1}\right|^{2}+\frac{2}{7}\left|\mathcal{A}_{2}\right|^{2}+\frac{2}{\sqrt{5}}\left|\mathcal{A}_{0}\right|\left|\mathcal{A}_{2}\right| \cos \left(\delta_{2}-\delta_{0}\right)$
$\left\langle P_{13}\right\rangle \equiv\left\langle P_{1}\right\rangle-\frac{14}{9}\left\langle P_{3}\right\rangle \propto \frac{2}{\sqrt{3}}\left|\mathcal{A}_{0}\right|\left|\mathcal{A}_{1}\right| \cos \left(\delta_{1}-\delta_{0}\right)$

$D \pi$ S-WAVE FROM $B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$

Effect of thresholds enhanced, by pole at $\sqrt{s_{p}} \sim(2451-i 134) \mathrm{MeV}$ on nearby unphysical sheet

Mass of lightest charmed $J^{P}=0^{+}$state:

- BW with $m=2300 \mathrm{MeV}$ incompatible with data
- UChPT with
(2105 $\pm 8-i(102 \pm 11)) \mathrm{MeV}$ is compatible

Du et al., PRL126(2021)192001

- Low mass confirmed by Lattice QCD (2196 $\pm 64-i(210 \pm 110)) \mathrm{MeV}$ at $M_{\pi}=239 \mathrm{MeV}$

HadSpec, JHEP07(2021)123
Analogous picture for $J^{P}=1^{+}$

CHARMED STATES

Quark Modell: M. Di Pierro and E. Eichten, PRD 64 (2001) 114004

Puzzles solved:

$1 M\left(D_{s 1}\right) \& M\left(D_{s 0}^{*}\right)$ are $D K$ and $D^{*} K$ bound states
$2 M\left(D_{s 1}\right)-M\left(D_{s 0}^{*}\right)$ $\simeq M\left(D^{*}\right)-M(D)$, since spin symmetry gives equal binding

3 States with strangeness heavier $M\left(D_{0}^{*}\right)=2100 \mathrm{MeV}$ $M\left(D_{s 0}^{*}\right)=2317 \mathrm{MeV}$ $M\left(D_{1}\right)=2247 \mathrm{MeV}$ $M\left(D_{s 1}\right)=2460 \mathrm{MeV}$
... role of left-hand cuts needs to be clarified

FROM $B \rightarrow \pi \pi / \nu$ TO $B \rightarrow \bar{D} \pi I^{+} I^{-}$

Remarks about $B \rightarrow \bar{D} \pi I^{+} I^{-}$:

- Good control of πD system
- Access to πD scattering from $B \rightarrow D \pi / \nu$ (see $\pi \pi$ from $K \rightarrow \pi \pi e \nu$)

SUMMARY AND CONCLUSION

- For near threshold states Weinberg criterion provides proper diagnostics
- View extended by studying the $\mathrm{SU}(3)_{f}$ multiplet structure
- what kinds of multiplets are there?
- pattern of spin and flavor symmetry breaking important
- Interplay of different poles leads to
- non-trivial line shapes
- non-trivial phase motions

We are on a good path to identify the hadronic molecules in the spectrum
... and to exploit their imprint on various observables

Thanks a lot for your attention

