Looking for new physics in rare semileptonic charm baryon decays

Marco Colonna

Charm InDor workshop 2024

不得る イヨン イヨン

э.

Introduction to charm physics at LHCb:

- can we do charm physics at LHCb?
- Introduction to baryonic charm decay physics:
 - why are we interested in baryonic charm decays?
 - which observables can we look at?
- ▶ Branching fraction measurements of $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$:
 - motivation, strategy and results.

▶ *CP* and Parity violation measurements in $\Lambda_c^+ \rightarrow p \phi (\rightarrow \mu^+ \mu^-)$:

- motivation and strategy.
- few (really a few) technical things.
- blinded results and outlook.

Conclusions.

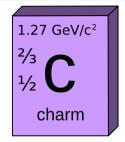
<ロ> < 同> < 同> < 目> < 目> < 目 > のへ 2/23

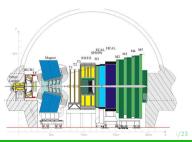
Charm at LHCb

- The study of charm decays is a unique probe for physics Beyond the Standard Model (BSM).
- Charm studies are complementary to the b and s sectors:
 - c is the only up-like heavy quark that hadronizes;
 - theoretical predictions have large uncertainties (non-perturbative QCD regime);
- At LHCb is possible to study it:

 $\sigma(pp
ightarrow c\overline{c}X, \sqrt{s} = 13 \, {
m TeV}) \sim 2.4 \, \, mb$ $\sigma(pp
ightarrow b\overline{b}X, \sqrt{s} = 13 \, {
m TeV}) \sim 0.1 \, \, mb$

LHCb collected the largest charm hadron dataset to perform studies.





Why are we into charm baryonic decays?

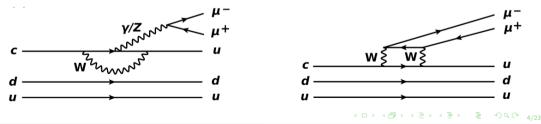
Flavor changing neutral current processes in the SM are highly suppressed.

Amplitude $A(c \rightarrow u)$ depends on CKM elements $(\lambda_i = V_{ci}^* V_{ui})$ and loop functions (f_i) :

$$A(c \rightarrow u) = \sum_{i=d,s,b} \lambda_i f_i = \lambda_s \left(\frac{(f_s - f_d)}{\lambda_s} + \frac{\lambda_b}{\lambda_s} (f_b - f_d) \right)$$

CKM suppression and Glashow-Iliopoulos-Maiani (GIM) mechanism lead to extreme suppression of branching fractions and CP asymmetries.

• Penguin contributions are very small ($< 10^{-8}$).



Two complementary approaches

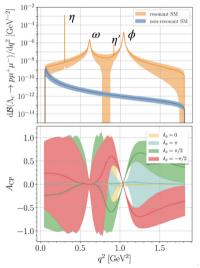
In SM $c \rightarrow u l^+ l^-$ transitions are heavily suppressed: may lead to the observation of NP.

Looking to $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ decay one can:

- measure the branching fraction of the decays;
- make a null test on A_{FB} in the lepton system;
- measure A_{CP} of the decay;

Today we can discuss:

- **branching ratio analysis** from the past (RUN1): "Search for the rare decay $\Lambda_c^+ \rightarrow p\mu^+\mu^-$ "
- **null test measurements** currently ongoing:
 - ▶ we are working on an analysis on the 2016-2018 data to measure A_{FB} and A_{CP} in 2 bins of $m_{\mu\mu}$ around the ϕ -resonant spectrum.



Branching ratio measurement: motivation and strategy

The branching ratio of the short distance $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ is extremely suppressed in SM:

Beyond the Standard Model phyiscs effects may enhance it.

We select events containing pairs of muons at LHCb.

Long distance contributions can increase the branching fraction up to $\sim O(10^{-6})$:

- the phase space is split in 3 regions:
 - ϕ resonant region $m_{\mu\mu} \in [985, 1055]$ MeV (control);
 - ω resonant region $m_{\mu\mu} \in [759, 805]$ MeV;
 - ▶ a non resonant regions excluding $|m_{\mu\mu} m_{reso}|$ < 40 MeV

We define the branching ratio with respect to the control as:

n the non resonance mode:
$$\frac{B(\Lambda_c^+ \to p\mu^+\mu^-)}{B(\Lambda_c^+ \to p\phi)B(\phi \to \mu^+\mu^-)} = \frac{\epsilon_{norm}}{\epsilon_{sig}} \times \frac{N_{sig}}{N_{norm}}$$

In the resonance mode:
$$\frac{B(\Lambda_c^+ \to p\omega)B(\omega \to \mu^+\mu^-)}{B(\Lambda_c^+ \to p\phi)B(\phi \to \mu^+\mu^-)} = \frac{\epsilon_{norm}}{\epsilon_{sig}} \times \frac{N_{sig}}{N_{norm}}$$

(ロ) (周) (三) (三) (三) (2) (6/23)

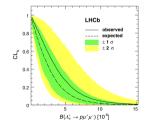
Branching ratio measurement: results from LHCb RUN1

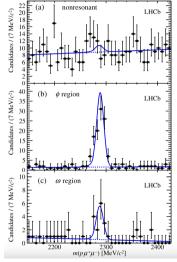
In the ω resonant region a signal has been observed with 5.0σ of significance:

$$B\left(\Lambda_{c}^{+}
ightarrow p\omega
ight) =$$
 (9.4 \pm 3.2 \pm 1.0 \pm 2.0) $imes$ 10 $^{-4}$

It is possible to infer an upper limit on the Branching ratio in the non resonant region as:

$${\it B}(\Lambda_c^+ o
ho \mu^+ \mu^-) <$$
 7.7 $imes$ 10 $^{-8}$ at 90% CL





ヨート

General overview on charm baryonic BR measurements

► BaBar limit on
$$\Lambda_c^+ \to p e^+ e^-$$
 mode [1]:
 $B(\Lambda_c^+ \to p e^+ e^-) < 2.7 \times 10^{-6}$

► LHCb limit on the
$$\Lambda_c^+ \to p\mu^+\mu^-$$
 mode [2]:
 $B(\Lambda_c^+ \to p\mu^+\mu^-) < 7.7 \times 10^{-8}$

► LHCb measurement on $\Lambda_c^+ \to p\mu^+\mu^-$ in the ω resonance region [2]: $B(\Lambda_c^+ \to p\omega(\to \mu^+\mu^-)) = (9.4 \pm 3.2 \pm 1.0 \pm 2.0) \times 10^{-4}$

• A measurement on the
$$\Sigma_c$$
 baryon has been done by E653 [3]:
 $B(\Sigma_c \to \Sigma^- \mu^+ \mu^-) < 7 \times 10^{-4}$

▶ Belle measurements on $\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$ modes [4]:

$$\begin{split} B(\Xi_c^0 \to \Xi^0 \mu^+ \mu^-) &< 6.5 \times 10^{-5} \\ B(\Xi_c^0 \to \Xi^0 e^+ e^-) &< 9.9 \times 10^{-5} \end{split}$$

🛟 Fermilab

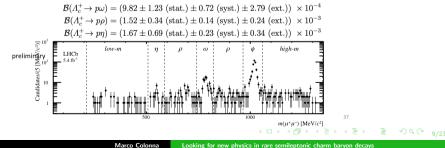
の<? 8/23</p>

A nice coincidence...

RUN2 update of the $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ branching ratio measurement is being presented at CERN today:

Summary

- Rare mode, extrapolating to full mass region from low- and high masses:
 - signal region (extrapolated): $\mathcal{B}(A_c^+ \to p\mu^+\mu^-) < 7.3 (8.2) \times 10^{-8}$ at 90% (95%) CL. • low-mass: $\mathcal{B}(A_c^+ \to p\mu^+\mu^-) < 6.5 (7.8) \times 10^{-8}$ at 90% (95%) CL
 - high-mass: $\mathcal{B}(A_c^+ \to p\mu^+\mu^-) < 11.8 (13.1) \times 10^{-8}$ at 90% (95%) CL
- Resonant mode mass regions (assuming no interference):



We can measure the branching fraction... Or at least put upper limits...

Can we perform the **null tests** I primised you? We can!

How the CP asymmetry looks like?

We can define the CP asymmetry over the spectrum of the dilepton mass as:

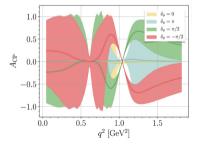
$$A_{CP}\left(q^{2}
ight)=rac{1}{\Gamma+\overline{\Gamma}}\left(rac{d\Gamma}{dq^{2}}-rac{d\overline{\Gamma}}{dq^{2}}
ight)$$

where $\Gamma(\overline{\Gamma})$ is the integrated branching fraction of $\Lambda_c^+ \to p \mu^+ \mu^ (\overline{\Lambda}_c^- \to \overline{p} \mu^+ \mu^-)$.

▶ We are sensitive to interference of NP with the resonant mode.

•
$$A_{CP}^{SM} < 5 \times 10^{-3}$$
 in the ϕ resonance region.

- The CP asymmetry can take different shapes the dilepton mass spectrum;
 - dependency on the strong phase;
 - we can measure it in different dilepton mass bins.



1

A D A A B A A B A A B A

How to access the CP asymmetry

We cannot access A_{CP} directly, we only can measure the so called raw-asymmetry (A_{CP}^{raw}) : A_{CP}^{raw} contains nuisance asymmetries (production and detection related):

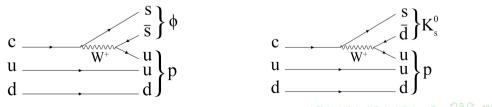
$$A_{CP}^{raw}\left(\Lambda_{c}^{+}\rightarrow p\mu^{+}\mu^{-}\right)=A_{CP}+\left.A_{P}\left(\Lambda_{c}^{+}\right)+A_{D}\left(p\right)\right.+\left(A_{D}\left(\mu^{+}\mu^{-}\right)=0\right)$$

▶ a control sample of $\Lambda_c^+ \to \rho K_s^0$ can be used to estimate the nuisance asymmetries:

$$A_{CP}^{raw}\left(\Lambda_{c}^{+}\rightarrow\rhoK_{s}^{0}\right)=A_{P}\left(\Lambda_{c}^{+}\right)+A_{D}\left(\rho\right)+\left(A_{D}\left(K_{s}^{0}\right)=0\right)$$

These asymmetries depend on the kinematic of the particle. **Reweight the control sample on data** :

▶ transverse momentum (PT), pseudorapidity (η), azimutal angle (ϕ) of Λ_c^+ and p



How the FB asymmetry looks like?

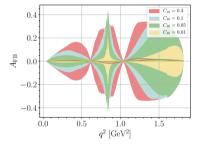
The SM angular distribution is defined by the **absence of an axial vector current**. The angular distribution is defined like:

$$\frac{d\Gamma}{dq^{2}d\cos\theta} = a\left(q^{2}\right) + b\left(q^{2}\right)\cos\theta + c\left(q^{2}\right)\cos^{2}\theta$$

Two observables are provided:

$$\begin{aligned} A_{FB}\left(q^{2}\right) &= \frac{b\left(q^{2}\right)}{\Gamma} \\ F_{H}\left(q^{2}\right) &= \frac{2}{\Gamma}\left(a\left(q^{2}\right) + c\left(q^{2}\right)\right) \end{aligned}$$

- In SM A_{FB} naturally vanishes ($C_{10}^{SM} = 0$).
- ► A small presence of NP may interfere with the resonant mode (A_{FB} ~ C₉^RC₁₀).



 $O_{10} = (\overline{u}_L \gamma_\mu c_L) (\overline{\ell} \gamma^\mu \gamma_5 \ell)$ $O_9^R = (\overline{u}_L \gamma_\mu c_L) (\overline{\ell} \gamma^\mu \ell)$

回っ イヨッ イヨン

1

How to access the FB asymmetry

The A_{FB} is defined with respect to θ -angle between:

- direction of the lepton in the dilepton frame;
- direction of the dilepton in the Λ_c frame.

$$A_{FB} = rac{N\left(\cos heta > 0
ight) - N\left(\cos heta < 0
ight)}{N\left(\cos heta > 0
ight) + N\left(\cos heta < 0
ight)}$$

The measurement of A_{FB} will be done:

- ▶ in two bins of the $m_{\mu\mu}$ spectrum around m_{ϕ} ;
- distinguishing between the two flavours Λ_c^+ and $\overline{\Lambda}_c^-$.

It is also possible to evaluate the relevant combinations:

$$\Sigma A_{FB} = \frac{1}{2} \left(A_{FB}^{\Lambda_c^+} + A_{FB}^{\Lambda_c^-} \right) \qquad \qquad \Delta A_{FB} = \frac{1}{2} \left(A_{FB}^{\Lambda_c^+} - A_{FB}^{\Lambda_c^-} \right)$$

p_{uu}

٨.

How to model and fit

A total model to fit the offline selected mass distribution has been studied:

$$f_{tot}(m; N_1, ..., N_n) = \sum_{i=1}^n N_i f_i(m; \vec{x}_i)$$

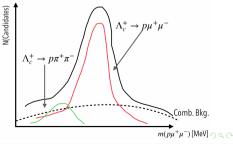
The shapes of the different components $(\vec{x_i})$ have been fixed by previous fits:

Λ⁺_c → pµ⁺µ⁻ signal is fixed from a fit on the simulation;
 combinatorial background is fixed by a fit on a control data sample;

• $\Lambda_c^+ \to p \pi^+ \pi^-$ MIS-ID is fixed by a fit on the simulation.

Multiple integrated fits has been applied to optimize the data selection.

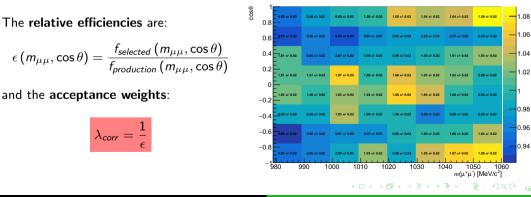
In the integrated fit only the yields (*N_i*) are free for each component.



Efficiency correction over the phasespace

The detector and the offline selection may have different efficiencies in different regions of the $(m_{\mu\mu}, \cos\theta)$ -phase space.

The distributions at the production level and after the offline selection are compared in the simulations.



Final fit and some considerations

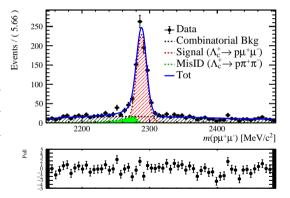
A total fit has been done on efficiency corrected data:

The free parameters are the yields of the components and the position of the signal peak:

▶ a shift of the signal peak between the two m_{µµ}−bins has been observed.

The results (asymmetries blinded) are:

Asym.	$m(\mu^+\mu^-)$	$N_{\rm sig}$	N _{misID}	N _{comb}	A_{sig}
A ^{raw} CP	ϕ_{low}	341 ± 21	65 ± 21	435 ± 26	$xxx\pm \sim 6\%$
	ϕ_{high}	432 ± 22	38 ± 16	390 ± 24	$xxx\pm \sim 5\%$
$A_{FB}^{\Lambda_c^+}$	ϕ_{low}	-	-	-	$xxx\pm \sim 9\%$
	ϕ_{high}	-	-	-	$xxx\pm \sim 7\%$
$A_{FB}^{\Lambda_c^-}$	ϕ_{low}	-	-	-	$xxx\pm \sim 9\%$
	ϕ_{high}	-	-	-	$xxx\pm \sim 7\%$



医肾管医肾管炎

1

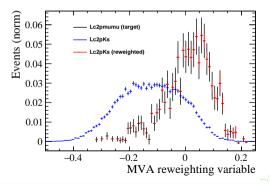
Instrumental asymmetry evaluation: reweighting

The nuisance asymmetries are: $A_{CP}^{raw}\left(\Lambda_{c}^{+} \rightarrow pK_{s}^{0}\right) = A_{P}\left(\Lambda_{c}^{+}\right) + A_{D}\left(p\right) + \left(A_{D}\left(K_{s}^{0}\right) = 0\right)$

• we want the control sample $(\Lambda_c^+ \to pK_S^0)$ to be kinematically similar to $\Lambda_c^+ \to p\mu^+\mu^-$; • the control sample has been reweighted on the data sample.

To overcome the low statistics a MVA-based 1-dimensional reweighing has been applied:

- a 6 variables BDT is trained on:
 - ▶ PT, ETA and PHI of the Λ_c^+ ;
 - PT, ETA and PHI of the p;
- the multivariate variable has been used to compute kinematic weights;
- a loss in statistics in the control sample is expected.



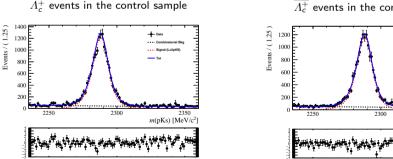
Instrumental asymmetry evaluation: fit

 $A_{CP}^{raw}(\Lambda_c^+ \to pK_s^0) = A_P(\Lambda_c^+) + A_D(p)$ is evaluated on the re-weighted $\Lambda_c^+ \to pK_s^0$ dataset:

► $A_{CP}^{raw}(\Lambda_c^+ \to pK_s^0) = (3.0 \pm 1.2) \times 10^{-2}$ for the re-weighted sample.

• $A_{CP}^{raw}(\Lambda_c^+ \to pK_s^0) = (2.4 \pm 0.6) \times 10^{-2}$ for the NON re-weighted sample;

The uncetrainty on $A_{CP}(\Lambda_c^+ \to p\mu^+\mu^-)$ is dominated by the one on $A_{CP}^{raw}(\Lambda_{2}^{+} \rightarrow p\mu^{+}\mu^{-}) ~(\sim 5-6\%).$



 $\overline{\Lambda_c^+}$ events in the control sample

--- Combinatorial Bb

2350

m(pKs) [MeV/c2

Systematic studies

Multiple systematic effects have been taken into account:

- imperfect mass shape in the model;
- limited Montecarlo in the efficiency correction;
- imperfect modeling of the efficiency correction;
- imperfect reweighting of the control sample;
- secondary decay contamination in the data and control samples;
- angular resolution effects.
 - > All the systematic effects, individually, are $\sim 10^{-3}$.

Correlation

The effect of the **limited Montecarlo in the efficiency correction** and the **angular resolution effects** have high correlation between $A_{FB}^{\Lambda_c^-}$ and $A_{FB}^{\Lambda_c^-}$.

→ □ → → 三 → → 三 → りへで

Finally the blinded measured values of A_{CP} and A_{FB} are:

	ϕ low	ϕ_{high}
A_{CP}	$(xxx\pm\sim 6(ext{stat})\pm\sim 0.5(ext{syst})) imes 10^{-2}$	$(xxx\pm\sim5(ext{stat})\pm\sim0.5(ext{syst})) imes10^{-2}$
$A_{FB}^{\Lambda_c^+}$	$(xxx\pm \sim 9({\sf stat})\pm \sim 1({\sf syst})) imes 10^{-2}$	$(xxx\pm\sim$ 7(stat) $\pm\sim$ 1(syst)) $ imes$ 10 $^{-2}$
$A_{FB}^{\Lambda_c^-}$	(xxx $\pm \sim$ 9(stat) $\pm \sim$ 1(syst)) $ imes$ 10 $^{-2}$	$(xxx\pm\sim$ 7(stat) $\pm\sim$ 1(syst)) $ imes$ 10 $^{-2}$

combined in $\Sigma A_{\rm FB}$ and $\Delta A_{\rm FB}$:

 $\begin{array}{c|c|c|c|c|c|c|}\hline & \phi_{low} & \phi_{high} \\ \hline \Sigma A_{FB} & (xxx\pm \sim 6(\text{stat})\pm \sim 1(\text{syst})) \times 10^{-2} & (xxx\pm \sim 5(\text{stat})\pm \sim 1(\text{syst})) \times 10^{-2} \\ \hline \Delta A_{FB} & (xxx\pm \sim 6(\text{stat})\pm \sim 1(\text{syst})) \times 10^{-2} & (xxx\pm \sim 5(\text{stat})\pm \sim 1(\text{syst})) \times 10^{-2} \\ \hline \end{array}$

▶ The measurements are **statistically limited**.

ゆ とう きょう く ほ とう ほう

Conclusions and outlook

Conclusions

- Charm baryonic decays give access to interesting observalbes to scrutinize SM predictions:
 - multiple analysis in the past and in the present are measuring them.
- ► The analysis to measure the branching ratio of A⁺_c → pµ⁺µ⁻ are currently setting upper limits to it.
- The analysis performing null tests in the φ region of Λ⁺_c → pμ⁺μ⁻ is possible but statistically limited.

Outlook

- A new analysis updating $B(\Lambda_c^+ \to p \mu^+ \mu^-)$ with RUN2 data is close to the pubblication.
- ▶ Null test analysis on $\Lambda_c^+ \rightarrow p \phi (\rightarrow \mu^+ \mu^-)$ is close to the unblinding.
- ▶ A preceding result on $\Lambda_c^+ \rightarrow p \omega (\rightarrow \mu^+ \mu^-)$ opens the possibility to perform null tests.

Thank you for the attention.

Enjoy the Charm In Dor.

Marco Colonna

Looking for new physics in rare semileptonic charm baryon decays