The reachability problem for Petri nets

Łukasz Kamiński

University of Warsaw

April 21, 2024

Łukasz Kamiński The reachability problem for Petri nets

< ∃⇒

What is a Petri net?

The set of places

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

The set of places

The set of transitions

∃ ► < ∃ ►</p>

The set of places

Places store tokens

The set of transitions

The set of places

 \bigcirc

Places store tokens

The set of transitions

There are arcs between places and transitions labeled with natural numbers.

Duck life simulation

Łukasz Kamiński The reachability problem for Petri nets

Duck life simulation

$Configuration = distribution \ of \ tokens \ over \ the \ places$

Configuration = distribution of tokens over the places

Problem

Given a Petri net and its two configuraions decide if one is reachable from the another.

Can we reach 5 tokens in p_1 and 4 tokens in p_2 from the above configuration?

Can we reach 5 tokens in p_1 and 4 tokens in p_2 from the above configuration?

No! The number of tokens in p_2 is always odd.

Theorem

The reachability problem for Petri nets is Ackermann-complete.

A B F A B F

$$A_1(n)=2n$$

$$A_1(n) = 2n$$
$$A_{i+1}(n) = \underbrace{A_i \circ \cdots \circ A_i}_n(1)$$

$$A_{1}(n) = 2n$$

$$A_{i+1}(n) = \underbrace{A_{i} \circ \cdots \circ A_{i}}_{n}(1)$$

$$A_{\omega}(n) = A_{n}(n)$$

$$A_{1}(n) = 2n$$

$$A_{i+1}(n) = \underbrace{A_{i} \circ \cdots \circ A_{i}}_{n}(1)$$

$$A_{\omega}(n) = A_{n}(n)$$

$$A_{1}(n) = 2n$$

$$A_{i+1}(n) = \underbrace{A_{i} \circ \cdots \circ A_{i}}_{n}(1)$$

$$A_{\omega}(n) = A_{n}(n)$$

$$A_{2}(n) = 2^{n}$$

$$A_{3}(n) = tower(n) = 2^{2^{2^{\dots}^{2}}} n$$

$$A_{\omega}(1) = 2$$

$$A_{\omega}(2) = 4$$

$$A_{\omega}(3) = 16$$

$$A_{\omega}(4) = 2^{2^{2^{\dots}^{2}}} 65536$$
...

$$A_{1}(n) = 2n$$

$$A_{i+1}(n) = \underbrace{A_{i} \circ \cdots \circ A_{i}}_{n}(1)$$

$$A_{\omega}(n) = A_{n}(n)$$

 \mathcal{F}_i is a class of all decision problems, that can be solved in time $A_i \circ A_{i_1} \circ \cdots \circ A_{i_m}$, where $i_1, \ldots, i_m < i$.

$$A_{2}(n) = 2^{n}$$

$$A_{3}(n) = tower(n) = 2^{2^{2\cdots^{2}}} n$$

$$A_{\omega}(1) = 2$$

$$A_{\omega}(2) = 4$$

$$A_{\omega}(3) = 16$$

$$A_{\omega}(4) = 2^{2^{2\cdots^{2}}} 65536$$
...

$$A_{1}(n) = 2n$$

$$A_{i+1}(n) = \underbrace{A_{i} \circ \cdots \circ A_{i}}_{n}(1)$$

$$A_{\omega}(n) = A_{n}(n)$$

 \mathcal{F}_i is a class of all decision problems, that can be solved in time $A_i \circ A_{i_1} \circ \cdots \circ A_{i_m}$, where $i_1, \ldots, i_m < i$.

 $A_{2}(n) = 2^{n}$ $A_{3}(n) = tower(n) = 2^{2^{2}\cdots^{2}} n$ $A_{\omega}(1) = 2$ $A_{\omega}(2) = 4$ $A_{\omega}(3) = 16$ $A_{\omega}(4) = 2^{2^{2^{\cdots^{2}}}} 65536$...

 $\mathcal{F}_2 = DTIME(2^{O(n)})$ $\mathcal{F}_3 = TOWER$ \dots $\mathcal{F}_w = ACKERMANN$

э

1976 EXPSPACE lower bound [Lipton] **1981** Decidability of reachability [Mayr]

1981 Decidability of reachability [Mayr]

1982 Decidability of reachability (simplified proof) [Kosaraju]

1976EXPSPACE lower bound [Lipton]1981Decidability of reachability [Mayr]1982Decidability of reachability (simplified proof) [Kosaraju]2015Upper bound \mathcal{F}_{ω^3} [Leroux, Schmitz]

- 1981 Decidability of reachability [Mayr]
- 1982 Decidability of reachability (simplified proof) [Kosaraju]
- 2015 Upper bound \mathcal{F}_{ω^3} [Leroux, Schmitz]
- 2019 Ackermannian upper bound \mathcal{F}_{ω} [Leroux, Schmitz]

- 1981 Decidability of reachability [Mayr]
- 1982 Decidability of reachability (simplified proof) [Kosaraju]
- 2015 Upper bound \mathcal{F}_{ω^3} [Leroux, Schmitz]
- 2019 Ackermannian upper bound \mathcal{F}_ω [Leroux, Schmitz]
- 2019 TOWER lower bound \mathcal{F}_3 [Czerwiński, Lazic, Leroux,

Mazowiecki]

- 1981 Decidability of reachability [Mayr]
- 1982 Decidability of reachability (simplified proof) [Kosaraju]
- 2015 Upper bound \mathcal{F}_{ω^3} [Leroux, Schmitz]
- 2019 Ackermannian upper bound \mathcal{F}_ω [Leroux, Schmitz]
- 2019 TOWER lower bound \mathcal{F}_3 [Czerwiński, Lazic, Leroux,

Mazowiecki]

2021 Ackermannian lower bound \mathcal{F}_{ω} [Czerwiński, Orlikowski]

Problem

What is the exact complexity of the reachability problem when we fix the number of places?

< ∃ > <

Problem

What is the exact complexity of the reachability problem when we fix the number of places?

Problem

Is the reachability problem decidable for Petri nets with data?

(E)

- Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In Proc. STOC 1981, pages 238–246, 1981.
- S. Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary version). In Proc. STOC 1982, pages 267–281, 1982.
- [3] Jérôme Leroux and Sylvain Schmitz. Demystifying reachability in vector addition systems. In Proc. LICS 2015, pages 56–67.
 IEEE Computer Society, 2015.
- [4] Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive- recursive in fixed dimension. In Proc. LICS 2019, pages 1–13. IEEE, 2019.
- [5] Wojciech Czerwiński, Łukasz Orlikowski. Reachability in vector addition systems is Ackermann-complete. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS) (pp. 1229-1240). IEEE.

Presentation by Sławomir Lasota about the reachability problem: https://www.mimuw.edu.pl/~sl/SLIDES/2023-09-ACPN.pdf

(E)