The reachability problem for Petri nets

Łukasz Kamiński
University of Warsaw

April 21, 2024

What is a Petri net?

The set of places

What is a Petri net?

The set of places

The set of transitions

What is a Petri net?

The set of places

Places store tokens

The set of transitions

What is a Petri net?

The set of places

Places store tokens

The set of transitions

There are arcs between places and transitions labeled with natural numbers.

Duck life simulation

Duck life simulation

The reachability problem

Configuration $=$ distribution of tokens over the places

The reachability problem

Configuration $=$ distribution of tokens over the places
Problem
Given a Petri net and its two configuraions decide if one is reachable from the another.

Example

Can we reach 5 tokens in p_{1} and 4 tokens in p_{2} from the above configuration?

Example

Can we reach 5 tokens in p_{1} and 4 tokens in p_{2} from the above configuration?
No! The number of tokens in p_{2} is always odd.

The reachability problem

Theorem
The reachability problem for Petri nets is Ackermann-complete.

Fast growing functions and induced complexity classes

$$
A_{1}(n)=2 n
$$

$$
\begin{aligned}
& A_{1}(n)=2 n \\
& A_{i+1}(n)=\underbrace{A_{i} \circ \cdots \circ A_{i}}_{n}(1)
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}(n)=2 n \\
& A_{i+1}(n)=\underbrace{A_{i} \circ \cdots \circ A_{i}}_{n}(1) \\
& A_{\omega}(n)=A_{n}(n)
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}(n)=2 n \\
& A_{i+1}(n)=\underbrace{A_{i} \circ \cdots \circ A_{i}}_{n}(1) \\
& A_{\omega}(n)=A_{n}(n)
\end{aligned}
$$

$$
\left.\begin{array}{l}
A_{2}(n)=2^{n} \\
\left.A_{3}(n)=\operatorname{tower}(n)=2^{2^{2^{\cdots}}}\right\} n
\end{array}\right\} n
$$

$$
\begin{aligned}
& A_{1}(n)=2 n \\
& A_{i+1}(n)=\underbrace{A_{i} \circ \cdots \circ A_{i}}_{n}(1) \\
& A_{\omega}(n)=A_{n}(n)
\end{aligned}
$$

$A_{2}(n)=2^{n}$
$\left.A_{3}(n)=\operatorname{tower}(n)=2^{2^{2^{\omega^{2}}}}\right\} n$
$A_{\omega}(1)=2$
$A_{\omega}(2)=4$
$A_{\omega}(3)=16$
$\left.A_{\omega}(4)=2^{2^{2 \cdots^{2}}}\right\} 65536$
$A_{1}(n)=2 n$
$A_{i+1}(n)=\underbrace{A_{i} \circ \cdots \circ A_{i}}_{n}(1)$
$A_{\omega}(n)=A_{n}(n)$
\mathcal{F}_{i} is a class of all decision problems, that can be solved in time $A_{i} \circ A_{i_{1}} \circ \cdots \circ A_{i_{m}}$, where $i_{1}, \ldots, i_{m}<i$.
$A_{2}(n)=2^{n}$
$\left.A_{3}(n)=\operatorname{tower}(n)=2^{2^{2 \omega^{-{ }^{2}}}}\right\} n$
$A_{\omega}(1)=2$
$A_{\omega}(2)=4$
$A_{\omega}(3)=16$
$\left.A_{\omega}(4)=2^{2^{2 \omega^{2}}}\right\} 65536$

$$
\begin{aligned}
& A_{1}(n)=2 n \\
& A_{i+1}(n)=\underbrace{A_{i} \circ \cdots \circ A_{i}}_{n}(1) \\
& A_{\omega}(n)=A_{n}(n)
\end{aligned}
$$

$A_{2}(n)=2^{n}$
$\left.A_{3}(n)=\operatorname{tower}(n)=2^{2^{2 \omega^{2}}}\right\} n$
$A_{\omega}(1)=2$
$A_{\omega}(2)=4$
$A_{\omega}(3)=16$
$\left.A_{\omega}(4)=2^{2^{2 \omega^{2}}}\right\} 65536$
\mathcal{F}_{i} is a class of all decision problems, that can be solved in time $A_{i} \circ A_{i_{1}} \circ \cdots \circ A_{i_{m}}$, where $i_{1}, \ldots, i_{m}<i$.
$\mathcal{F}_{2}=\operatorname{DTIME}\left(2^{O(n)}\right)$
$\mathcal{F}_{3}=$ TOWER
$\mathcal{F}_{\omega}=$ ACKERMANN

The history of the problem

1976 EXPSPACE lower bound [Lipton]

The history of the problem

1976 EXPSPACE lower bound [Lipton]
1981 Decidability of reachability [Mayr]

1976 EXPSPACE lower bound [Lipton]
1981 Decidability of reachability [Mayr]
1982 Decidability of reachability (simplified proof) [Kosaraju]

1976 EXPSPACE lower bound [Lipton]
1981 Decidability of reachability [Mayr]
1982 Decidability of reachability (simplified proof) [Kosaraju] 2015 Upper bound $\mathcal{F}_{\omega^{3}}$ [Leroux, Schmitz]

1976 EXPSPACE lower bound [Lipton]
1981 Decidability of reachability [Mayr]
1982 Decidability of reachability (simplified proof) [Kosaraju]
2015 Upper bound $\mathcal{F}_{\omega^{3}}$ [Leroux, Schmitz]
2019 Ackermannian upper bound \mathcal{F}_{ω} [Leroux, Schmitz]

1976 EXPSPACE lower bound [Lipton]
1981 Decidability of reachability [Mayr]
1982 Decidability of reachability (simplified proof) [Kosaraju]
2015 Upper bound $\mathcal{F}_{\omega^{3}}$ [Leroux, Schmitz]
2019 Ackermannian upper bound \mathcal{F}_{ω} [Leroux, Schmitz]
2019 TOWER lower bound \mathcal{F}_{3} [Czerwiński, Lazic, Leroux, Mazowiecki]

1976 EXPSPACE lower bound [Lipton]
1981 Decidability of reachability [Mayr]
1982 Decidability of reachability (simplified proof) [Kosaraju]
2015 Upper bound $\mathcal{F}_{\omega^{3}}$ [Leroux, Schmitz]
2019 Ackermannian upper bound \mathcal{F}_{ω} [Leroux, Schmitz]
2019 TOWER lower bound \mathcal{F}_{3} [Czerwiński, Lazic, Leroux, Mazowiecki]
2021 Ackermannian lower bound \mathcal{F}_{ω} [Czerwiński, Orlikowski]

Open problems

Problem

What is the exact complexity of the reachability problem when we fix the number of places?

Open problems

Problem

What is the exact complexity of the reachability problem when we fix the number of places?

Problem

Is the reachability problem decidable for Petri nets with data?
[1] Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In Proc. STOC 1981, pages 238-246, 1981.
[2] S. Rao Kosaraju.Decidability of reachability in vector addition systems (preliminary version). In Proc. STOC 1982, pages 267-281, 1982.
[3] Jérôme Leroux and Sylvain Schmitz. Demystifying reachability in vector addition systems. In Proc. LICS 2015, pages 56-67. IEEE Computer Society, 2015.
[4] Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive- recursive in fixed dimension. In Proc. LICS 2019, pages 1-13. IEEE, 2019.
[5] Wojciech Czerwiński, Łukasz Orlikowski. Reachability in vector addition systems is Ackermann-complete. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS) (pp. 1229-1240). IEEE.

Presentation by Sławomir Lasota about the reachability problem: https://www.mimuw.edu.pl/~sl/SLIDES/2023-09-ACPN.pdf

