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Short introduction

Recently formulated statistical hadronization model of hadron production in heavy-ion collisions
in the few-GeV energy regime allowed to describe transverse mass and rapidity spectra of hadrons.

Main point of this model is assumption of spherical (Phys. Rev. C, 102(5):054903, 2020 [1]) or
spheroidal (Phys. Rev. C, 107(3):034917, 2023 [2]) expansion instead of classical formalism of
boost-invariant blast-ave models used in high-energy regime.

In this work, we continue the analysis of the data collected by the HADES Collaboration for
Au-Au collisions at the beam energy v/Syn = 2.4 GeV and the centrality class of 10%.

Fits to the particles abundances suggest two different sets of possible freeze-out thermodynamic
parameters. The main difference between them resides in two different values of the freeze-out
temperature: T = 49.6 MeV vs. T = 70.3 MeV, reffered as low- and high-temperature ones.

In total we discuss three models: low-temperature spherical model, and low- and
high-temperature spheroidal models called ” A” and ” B” respectively.



Thermodynamic parameters

Parameter Spherical Spheroidal A Spheroidal B

T (MeV) 49.6 49.6 70.3
up (MeV) 776 776 876
pir; (MeV) —14.1 —14.1 —215
R (fm) 16.02 15.7 6.06

H (MeV) 8.0 10.0 225

d 0 0.2 0.4

vr = tanh(HR) 0.57 0.66 0.60
vr = cosh(HR) 1.22 1.33 1.25

Table: Upper part: thermodynamic parameters obtained from different fitting strategies to ratios of
particle multiplicities measured in Au-Au collisions at the beam energy /sy = 2.4 GeV (Phys. Rev. C,
102(5):054903, 2020 [1], Phys. Rev. C, 107(3):034917, 2023 [2], Phys. Lett. B, 822:136703, 2021 [3]).
Middle part: the system’s radius R, the Hubble-like expansion parameter H, and momentum-space
longitudinal eccentricity § obtained from the fits to the experimentally measured proton and pion

spectra [2]. Lower part: the radial flow and Lorentz gamma factor at the system’s boundary (r = R). The
names: Spherical, Spheroidal A, and Spheroidal B refer to different models of freeze-out discussed in the

text.
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Figure: Graphical representation of the flow parametrization for the three studied cases. The points on the
surfaces represent solutions of the equation (v2 + 115) /(1 —=68) +v2/(1+6) =2
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Coalescence model

The basic idea of the coalescence model for deuteron production is that the deuteron spectrum is
obtained as the product of proton and neutron spectra taken at half of the deuteron momentum.
We define the proton and neutron three-momentum distributions by the functions:

dN, dN,
F, =2 F,(p)= = 1
»(P) By (p) &y (1)
and the deuteron distribution as the product:
dNa _ Pa Pa {
D, (5) (%), 8

where Apg is the deuteron formation rate coefficient discussed in more detail below and the
subscripts d, p, n refer to deuterons, protons, and neutrons, respectively.



Coalescence model

As in both theory and experiment one usually deals with invariant momentum distributions,
EdN/(d®p) it is convenient to recall that for cylindrically symmetric (with respect the beam axis
z) systems studied in this work we have:

AN N AN
d3p  2nEdypidp, 2nEdym.idm.’

®3)

where F is the on-mass-shell energy of a particle £ = y/m?2 + p? and m is its transverse mass
my = \/m? + p% . Therefore, from (2) we obtain:

dNg Arr dNp dNn,

Egdymigdm.g 27 Edymidm, Edymiodm,’
For finite values of rapidity (4) takes the form:
djvd A FR d 1\‘71 D dNn,

dym? ,dmig 2w coshy dym? dm, dym? dm




Dueteron formation ratio

A popular form of the coefficient Apr used in the literature is Acta Phys. Polon. B, 48:707,
2017 [4]:

Apr = 1(2#)3 / d*r D(r) |¢a(r)]”. (6)
Here the function D(r) is the normalized to unity distribution of the relative spacetime positions
of the neutron and proton pairs at freeze-out, while ¢4(r) is the deuteron wave function of relative

motion.

The most popular choice for those two functions are Gaussian profiles:

_ r2
D('I") = (4ﬂ—Riln) 8/2 exp (—W> 5 (7)

|Ga(r)|? = (4 R3) ™ exp (—%) , (8)

where Ryin is the radius of the system at freeze-out and Ry = 2.13 fm is the deuteron radius.



Dueteron formation ratio

Expression (7) gives the root-mean-squared value ryms = V6R ~ 2.45R, which implies deuteron
production far away from the original thermal system and its long formation time, which is
inconsistent with our model.

Thus, as an alternative to the Gaussian distribution (7), we use the distribution of a relative
distance for particles produced independently in a sphere of radius R, reffered later as sharp:

3 3r r® .

Also for the deuteron wave function we use the Hulthen wave function defined by the expression
Phys. Rev. C, 103(1):014907, 2021 [5]:

af(a+ B) exp (—ar) — exp (=fr)
2m(a — B)? r ’

pa(r) = (10)

where o = 0.2 fm~* and § = 1.56 fm~'. * Both D(r) and |¢4(r)|* are normalized to unity.

'We use here traditional notation, 3 appearing in (10) should not be confused with-inverse temperature.
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Figure: The square of the Hulthen wave function and different versions of the nucleon pair distribution
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Formation ratio values

Formation rate Spherical A B
Agc (MeV?) 7565 8028 120509
Asc (MeV?) 64239 67860 693 463
Asu (MeV?) 69 661 73735 942 476

Table: Values of the formation rate parameter Apg for different choices of the functions D(r) and ¢q4(r):
Agg is obtained with the two Gaussian profiles, Eqs. (7) and (8), and Ryin = R; Agg follows from
Egs. (9) and (8); finally, Agy is calculated with Egs. (9) and (10).

We observe that the values of Arr do not significantly differ for the spherical and spheroidal A
cases — they are both low-temperature scenarios with large freeze-out radii. However, an increase
in the magnitude of Apg is clearly seen if we switch from the Gaussian to the sharp cutoff
distribution of pairs. An additional increase of the magnitude of Apg is seen if we switch to the
spheroidal B scenario. In this case, the freeze-out radius is relatively small (~ 6 fm) and the
overlap of the pair distribution with the deuteron wave function becomes the largest.



Cooper-Frye formula

The standard starting point for quantitative calculations is the Cooper-Frye formula that
describes the invariant momentum spectrum of particles:

(]N ' 3 ) ;

By = | TSu@pf(@.p). (11)

Here f(z,p) is the phase-space distribution function of particles, and p* = (F, p) is their
four-momentum with the mass-shell energy E = /m? + p2.
The infinitesimal element of a three-dimensional freeze-out hypersurface from which particles are
emitted d*%,(x) may be obtained from the formula:

9z 8z° oz

3

&S = ~epapy 5 5 o dadbde, (12)
where €, is the Levi-Civita tensor with the convention eg123 = —1 and a, b, ¢ are the three

independent coordinates introduced to parametrize the hypersurface. This allows us to construct
a six-dimensional, Lorentz invariant density of the produced particles:
- d?
d°N = =L &S p f(.p). (13)
The independent variables in such a general parametrization would be three components of
three-momentum and the variables a, b, and c.



Phase-space distribution function

Assuming local equilibrium the phase-space distribution function have general form:

f(x,p)=f(u-p)=(297‘g)3 [T_lexp (%) —x]il, (14)

where x = —1 (x = +1) for Fermi-Dirac (Bose-Einstein) statistics, gs = 2s + 1 is spin degeneracy,
T is temperature of system and T is fugacity factor.
In models fugacity factor takes form:

B + 315
T, = _
REES A
_ 1
Tn = €Xp (%) . (15)

where pup and pr, are baryon and isospin chemical potentials, respectively.



Spherical Symmetry
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Parametrization

First model assumes spherical symmetry of fireball and single-freeze-out approach was used to
define freeze-out hypersurface. Expansion of fireball is treated as Hubble like with constant H to
avoid non-zero speed of the centrum of the fireball. This assumptions and usage of spherical
coordinates, leads to the following parametrization:

d*%,, = (1,0,0,0)r sin 0dfdpdr, (16)

u = (r)(1,v(r)er) (17)

with e, = (cos ¢sin 6, sin ¢ sin 0, cos 0),

P = (E,pep), (18)

with ep = (cos ¢p sin 0, sin ¢p, sin 0, cos Op).

v(r) = tanh (Hr), (19)



u-p=(r)(Ep —pv(r)x),
d*S - p = E,r® sin 0d0dedr,

~(r) = cosh(Hr).
where k = e, - €, = cos 0 cos b, + sin 6 sin 0, cos(¢d — ¢p).

40> «4F>» « =>»

<

Sphericall symmetry allows to calculate needed expressions in the phase-space distribution,

namely:
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Proton distribution function

Using parametrization from slide before, and Fermi-Dirac distribution, one can obtain proton
distribution function in form:

R T 27
dN gs coshy 2 :
a0 [ [
0 0 0
—1
X[rlexp(w)ﬂ] . (23)

Due to spherical symmetry, the integral on the RHS of (23) is independent of the angles 0, and
¢p, hence we may set 6, = ¢, = 0 (k = cosf) and write:

dN

- = h 24
dym?2 dm, coshy S5(p) (24)

where:

2

R -
Sp) = s /d'r'r‘z/d()sin() (25)
0 0

2\ 3 ~ S —1
» {T,l exp <E(/0sh(H7) g;hlnh([]r) (,()5(9> n 1} .



Protons in spherical model

In the spherical case, our results for protons and neutrons depend only on the magnitude of their
three-momentum:

p= \/p%er%,erz = \/pi+misinh2y~ (26)

Hence, the transverse-momentum distribution of protons or neutrons at zero rapidity is directly
given by the function S(p. ), namely:

d j\‘rp N

— =Syn . 27
dym? dm ) pn(PL) (27)

=0

On the other hand, the rapidity distribution is given by the integral:

- _coshy/ ( pL—l—mLsmh y) m2dm,. (28)



Results
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Figure: Transverse-momentum (left) and rapidity (right) spectra of protons obtained in the spherical
model (solid red lines) compared with the HADES data. The experimental errors of the
transverse-momentum spectra are within the data points. Brighter points in the right panel are mirror
(y — —y) reflections. The total yield of protons N, is 72.0, while the experimental result is 77.6, hence
differs by less than 10%.



Deuterons in spherical model

Having the proton model spectra reproduced, we can turn to the analysis of the deuteron
production. In this case, we use (27), and rewrite (4) in a compact form as:

dNy _ Arr g <]u(t> g <}ud)
dym? ydmal,_, 2r P\ 2 "\ 2/
(29)
where we can use the substitution p1q = y/m? ; — m2. For finite values of rapidity, we use:
ANy B Arg S m? , cosh® y — m2
dym? ,dmiq ~  2mcoshy P 2

2 2 2

\/de cosh”y —mj
X Sy, (30)
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Results

[(MeV/c)~?)

0

dN
m2 dm  dyen. |,

1

deuterons (spherical model)

1077 . ' . .
— AGG
----- A
1 0—8 3 SG
E e Asu
Bere,,
e,
.
@,
107 e,
1010}
1 0—11 ) P P B
0 200 400

600 800

m, —my[MeV/c?

1000

deuterons (spherical model)

50
— Agc (x10)
40 N Agg (x10)
-------- Agn (x10)
30} &
s T H
s
& g 5
e !
20 §
[ %
%
’ i
10: ‘(‘
[ 4
» 2NN
0 A TN S
-2 -1 0 1 2

Figure: Predictions of the spherical model for the deuteron production. Left: model transverse-momentum
spectra obtained for three different values of the formation rate coefficient Apr (as given in Table 2).

Right: model rapidity distributions. The biggest obtained yield is Ny ~ 2.88, while the measured
deuteron yield is 28.7.



Spheroidal model
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Parametrization

For spheroidally symmetric freeze-outs with respect to the beam axis, it is convenient to introduce
the following parametrization of the space-time points on the freeze-out hypersurface:

m“:(t,r\/l—eerhr\/l—i—e cos@). (31)

Here the parameter e controls deformation from a spherical shape, while

e-1 = (cospsinf,sin¢sinf). For ¢ > 0 the hypersurface is stretched in the (beam)
z-direction.The resulting infinitesimal element of the spheroidally symmetric hypersurface has the
form:

d’%, = (1 —€)(V1+¢0,0,0)r” sin §dddepdr, (32)

ut =~5(r,0) (l,v('r)\/ 1—4der1,v(r)V1+dcos 0) , (33)

p" = (Ep, pey), (34)

v(r) = tanh (Hr), (35)



Parametrization

Those relations allows to write needed expressions in the phase-space distribution as:

u-p=7(r,0) [E, — po(r)x(d)], (36)
where £(d) = v/1+ dcosfcos8, + /1 — §sinfsin b, cos(¢p — ¢p),

&S - p = (1 — )1+ eE,r? sin 0dfdedr, (37)

=

Y(r,0) = [1 — (1 + & cos (29))L(7)2} B (38)

earlier analysis of the spectra showed that a very good description of the data can be obtained by
assuming single freeze-out and € = 0, however with § # 0. Then, we have, as in the spherical case:

d*Y - p= Er’drsin6dfde. (39)



Proton distribution function

The Cooper-Frye formula for fermions takes the form:

dN

W = coshy S(p,0p)

where :

™ 27

S'(p,é’p) = (297:)2 /Rdrr2/dt‘)sin0/d¢ [Tfl exp (%) +1] _1.
0

0 0

With u - p given by (36), where due to the spheroidal symmetry we can set ¢, = 0.

(40)



Protons in spheroidal model

Finally, by changing variables from p and 6, to rapidity and transverse mass, we may write:
dN ~ 5
dymZdm. coshy S [\/m Gy(mmy)] : (42)

m sinhy

/m2 2 2
m< cosh®y —m

We note that within our approximations the angle (43) is the same for nucleons and deuterons. At
zero rapidity we obtain as the special case:

where:

0y(m,y) = arccos (43)

dN
dym? dm

S (pL, g) . (44)

y=0
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Figure: Transverse-momentum (left) and rapidity (right) spectra of protons obtained in the spherical
model version A (solid red lines) compared with the HADES data. The experimental errors of the
transverse-momentum spectra are within the data points. Brighter points in the right panel are mirror
(y — —y) reflections. The total yield of protons N, is 73.78, while the experimental result is 77.6, hence
differs by less than 5%.



Results
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Figure: Same as Fig. 5 but for the spheroidal model version B. The total yield of protons N, is 69.35, while
the experimental result is 77.6, hence differs by ~ 10%. The contribution from the Delta resonance is not
included here (the complete result with Delta is shown in Phys. Rev. C, 107(3):034917, 2023 [2].



Having checked that we can reproduce the proton spectra, we can make predictions for the
results are presented in Table 3.

deuterons. In this case, we use (30) with the nucleon spectrum defined by Eq. (42). Our numerical
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Deuterons in spheroidal model A
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Figure: Predictions for the deuteron spectra in the spheroidal model version A. The biggest obtained yield
is Ng = 2.02, while the measured deuteron yield is 28.7.



Deuterons in spheroidal model B
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Figure: Predictions for the deuteron spectra in the spheroidal model version B. The biggest obtained yield
is Ng &~ 27.04, while the measured deuteron yield is 28.7, hence differs by ~ 5%.



Results

Model A Aca Asc Asu
Ny 0.22 1.86 2.02
(dNa/dy)y—o 0.25 2.14 2.32
Model B Aaa Asa Asu
Ny 3.46 19.89 27.04
(dNa/dy)y—o 4.09 23.56 32.02

Table: Model results for Ny and (dNg4/dy)y—o obtained for the spheroidal model A (the second and third
lines) and the spheroidal model B (the fourth and fifth line). The second, third, and fourth columns
correspond to different values of the formation rate coefficient A.

Total yield of deuterons in high-temperature spheroidal model is N4 ~ 27.04, while the measured
deuteron yield is 28.7, hence differs by ~ 5%.
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Conclusions

We find that the slope of the transverse-momentum spectra of deuterons follows naturally from
the main coalescence ansatz that the deuteron spectrum is the product of nucleon spectra taken at
half of the deuteron three-momentum. However, the normalization of the deuteron spectrum
depends very strongly on the value of the so-called formation rate coefficient.

Both, a higher freeze-out temperature (a smaller system’s size) and a non-Gaussian distribution of
the distance between the original pairs forming the deuteron increase the probability that a
nucleon pair forms a deuteron. Each of these effects increases the formation rate by a factor of 10.

At the level of the proton and pion spectra (the latter are not shown here), the three considered
herein freeze-out models give very similar quantitative descriptions of the data — the standard
deviations for the spheroidal models A and B are @ = 0.238 and @ = 0.256 (Phys. Rev. C,
107(3):034917, 2023 [2]), respectively. Taking into account the measured yield of deuterons, our
present work favors, however, the freeze-out scenario at a higher freeze-out temperature combined
with a spheroidal expansion. This case may be further examined by a study of other interesting
aspects such as the contribution from the Delta resonance, Lambda spin polarization (as in Phys.
Rev. C 100(5):054907, 2019 [6]), and the production of other light nuclei.



Bibliography I

ﬁ Szymon Harabasz, Wojciech Florkowski, Tetyana Galatyuk, . Ma Lgorzata Gumberidze,
Radoslaw Ryblewski, Piotr Salabura, and Joachim Stroth.
Statistical hadronization model for heavy-ion collisions in the few-GeV energy regime.
Phys. Rev. C, 102(5):054903, 2020.

a Szymon Harabasz, Jedrzej Kolas, Radostaw Ryblewski, Wojciech Florkowski, Tetyana
Galatyuk, Malgorzata Gumberidze, Piotr Salabura, Joachim Stroth, and Hanna Paulina
Zbroszczyk.

Spheroidal expansion and freeze-out geometry of heavy-ion collisions in the few-GeV energy
regime.
Phys. Rev. C, 107(3):034917, 2023.

ﬁ Anton Motornenko, Jan Steinheimer, Volodymyr Vovchenko, Reinhard Stock, and Horst
Stoecker.
Ambiguities in the hadro-chemical freeze-out of Au+Au collisions at SIS18 energies and how
to resolve them.
Phys. Lett. B, 822:136703, 2021.

ﬁ Stanislaw Mrowczynski.
Production of light nuclei in the thermal and coalescence models.
Acta Phys. Polon. B, 48:707, 2017.



@ Francesca Bellini, Kfir Blum, Alexander Phillip Kalweit, and Maximiliano Puccio.
Examination of coalescence as the origin of nuclei in hadronic collisions.

Phys. Rev. C, 103(1):014907, 2021.

E Wojciech Florkowski, Avdhesh Kumar, Radoslaw Ryblewski, and Aleksas Mazeliauskas.

Longitudinal spin polarization in a thermal model.

Phys. Rev. C, 100(5):054907, 2019.

4O «4F»r 4

it
v

DA



