# Geometric decomposition method in solving equations of physics and geometry <br> XII Bolyai-Gauss-Lobachevsky Conference (BGL-2024) 

Radosław A. Kycia
kycia.radoslaw@gmail.com
joint work with Josef Šilhan arXiv:2210.03663 [math.DG]

Faculty of Computer Science, T. Kościuszko Cracow University of Technology, Kraków AND
Department of Mathematics and Statistics
Masaryk University, Brno
5.2024

## Outline

(1) Motivation
(2) The Poincaré lemma
(3) Covariant exterior derivative

- Homogenous parallel transport equation
- Inhomogenous parallel transport equation

4 Other applications
(5) Summary
(6) Bibliography

## Motivation

## ODEs

Solution of

$$
\begin{equation*}
\frac{d x(t)}{d t}=f(t) \tag{1}
\end{equation*}
$$

is

$$
\begin{equation*}
x(t)=C+\int_{0}^{t} d t^{\prime} f\left(t^{\prime}\right), \quad C=x(0) \in \operatorname{ker}\left(\frac{d}{d x}\right) . \tag{2}
\end{equation*}
$$

## ODEs 2

Consider equation

$$
\begin{equation*}
\frac{d x(t)}{d t}=f(t) x(t), x(0)=C \tag{3}
\end{equation*}
$$

We switch to integral equation

$$
\begin{equation*}
x(t)=C+\int_{0}^{t} x\left(t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime} \tag{4}
\end{equation*}
$$

and iterate

$$
\begin{equation*}
x(t)=C+\int f C+\int f \int f C+\ldots \tag{5}
\end{equation*}
$$

Can we have such simple way of solving exterior differential equation by an 'integral' of some kind?

## ODEs 2

Consider equation

$$
\begin{equation*}
\frac{d x(t)}{d t}=f(t) x(t), x(0)=C \tag{3}
\end{equation*}
$$

We switch to integral equation

$$
\begin{equation*}
x(t)=C+\int_{0}^{t} x\left(t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime} \tag{4}
\end{equation*}
$$

and iterate

$$
\begin{equation*}
x(t)=C+\int f C+\int f \int f C+\ldots \tag{5}
\end{equation*}
$$

Can we have such simple way of solving exterior differential equation by an 'integral' of some kind?

## The Poincaré lemma

The Poincaré lemma

The Poincaré lemma

$$
H^{n}\left(\mathbb{R}^{k}\right)=H^{n}(\text { point })= \begin{cases}\mathbb{R}, & (n=0)  \tag{6}\\ 0 & (n>0)\end{cases}
$$

$\operatorname{dim}\left(H^{k}\right)=$ no. of closed $k$-forms $(d \omega=0)$ that are not exact (not of the form $\omega=d \alpha$ ).

Not quite useful in computations.

The Poincaré lemma

$$
H^{n}\left(\mathbb{R}^{k}\right)=H^{n}(\text { point })= \begin{cases}\mathbb{R}, & (n=0)  \tag{6}\\ 0 & (n>0)\end{cases}
$$

$\operatorname{dim}\left(H^{k}\right)=$ no. of closed $k$-forms $(d \omega=0)$ that are not exact (not of the form $\omega=d \alpha$ ).

Not quite useful in computations.

The Poincaré lemma

Homotopy Invariance Formula (for linear homotopy)

$$
\begin{equation*}
H d+d H=I^{*}-s_{x_{0}}^{*} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.H \omega:=\int_{0}^{1} \mathcal{K}\right\lrcorner\left.\omega\right|_{F(t, x)} t^{k-1} d t, \quad H: \Lambda^{*}(U) \rightarrow \Lambda^{*-1}(U) \tag{8}
\end{equation*}
$$

for $\omega \in \Lambda^{k}(U), \mathcal{K}:=\left(x-x_{0}\right)^{i} \partial_{i}, k=\operatorname{deg}(\omega), U$ - star-shaped,
and linear homotopy $F(t, x)=x_{0}+t\left(x-x_{0}\right)$ interpolates between $I d$ and the constant map $s_{x_{0}}: x \rightarrow x_{0}$.

Why $H$ is so interesting?

The Poincaré lemma

Homotopy Invariance Formula (for linear homotopy)

$$
\begin{equation*}
H d+d H=I^{*}-s_{x_{0}}^{*} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.H \omega:=\int_{0}^{1} \mathcal{K}\right\lrcorner\left.\omega\right|_{F(t, x)} t^{k-1} d t, \quad H: \Lambda^{*}(U) \rightarrow \Lambda^{*-1}(U) \tag{8}
\end{equation*}
$$

for $\omega \in \Lambda^{k}(U), \mathcal{K}:=\left(x-x_{0}\right)^{i} \partial_{i}, k=\operatorname{deg}(\omega), U$ - star-shaped,
and linear homotopy $F(t, x)=x_{0}+t\left(x-x_{0}\right)$ interpolates between $I d$ and the constant map $s_{x_{0}}: x \rightarrow x_{0}$.

Why $H$ is so interesting?

The Poincaré lemma

Homotopy Invariance Formula (for linear homotopy)

$$
\begin{equation*}
H d+d H=I^{*}-s_{x_{0}}^{*} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.H \omega:=\int_{0}^{1} \mathcal{K}\right\lrcorner\left.\omega\right|_{F(t, x)} t^{k-1} d t, \quad H: \Lambda^{*}(U) \rightarrow \Lambda^{*-1}(U) \tag{8}
\end{equation*}
$$

for $\omega \in \Lambda^{k}(U), \mathcal{K}:=\left(x-x_{0}\right)^{i} \partial_{i}, k=\operatorname{deg}(\omega), U$ - star-shaped, and linear homotopy $F(t, x)=x_{0}+t\left(x-x_{0}\right)$ interpolates between $I d$ and the constant map $s_{x_{0}}: x \rightarrow x_{0}$.

Homotopy Invariance Formula (for linear homotopy)

$$
\begin{equation*}
H d+d H=I^{*}-s_{x_{0}}^{*} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.H \omega:=\int_{0}^{1} \mathcal{K}\right\lrcorner\left.\omega\right|_{F(t, x)} t^{k-1} d t, \quad H: \Lambda^{*}(U) \rightarrow \Lambda^{*-1}(U) \tag{8}
\end{equation*}
$$

for $\omega \in \Lambda^{k}(U), \mathcal{K}:=\left(x-x_{0}\right)^{i} \partial_{i}, k=\operatorname{deg}(\omega), U$ - star-shaped, and linear homotopy $F(t, x)=x_{0}+t\left(x-x_{0}\right)$ interpolates between $I d$ and the constant map $s_{x_{0}}: x \rightarrow x_{0}$.

Why $H$ is so interesting?

The Poincaré lemma

## Why $H$ is so interesting?

$$
\begin{equation*}
H^{2}=0 \tag{9}
\end{equation*}
$$

That gives $\left(H d+d H=I-s_{x_{0}}^{*}\right)$

$$
\begin{equation*}
(H d)^{2}=H d, \quad(d H)^{2}=d H . \tag{10}
\end{equation*}
$$

```
Geometric decomposition
We have projectors Hd and dH onto
    - Exact/closed vector space \mathcal{E}(U)=im(dH)=ker(d),
    - Antiexact module }\mathcal{A}(U)=im(Hd)=ker(H)
    - }\mp@subsup{\Lambda}{}{*}(U)=\mathcal{E}(U)\oplus\mathcal{A}(U
```

The Poincaré lemma

Why $H$ is so interesting?

$$
\begin{equation*}
H^{2}=0 \tag{9}
\end{equation*}
$$

That gives $\left(H d+d H=I-s_{x_{0}}^{*}\right)$

$$
\begin{equation*}
(H d)^{2}=H d, \quad(d H)^{2}=d H . \tag{10}
\end{equation*}
$$

```
Geometric decomposition
We have projectors Hd and dH onto
    - Exact/closed vector space \mathcal{E}(U)=im(dH)=ker(d),
    - Antiexact module }\mathcal{A}(U)=im(Hd)=ker(H)
    - }\mp@subsup{\Lambda}{}{*}(U)=\mathcal{E}(U)\oplus\mathcal{A}(U
```

The Poincaré lemma

Why $H$ is so interesting?

$$
\begin{equation*}
H^{2}=0 \tag{9}
\end{equation*}
$$

That gives $\left(H d+d H=I-s_{x_{0}}^{*}\right)$

$$
\begin{equation*}
(H d)^{2}=H d, \quad(d H)^{2}=d H \tag{10}
\end{equation*}
$$

[^0]Why $H$ is so interesting?

$$
\begin{equation*}
H^{2}=0 \tag{9}
\end{equation*}
$$

That gives $\left(H d+d H=I-s_{x_{0}}^{*}\right)$

$$
\begin{equation*}
(H d)^{2}=H d, \quad(d H)^{2}=d H \tag{10}
\end{equation*}
$$

## Geometric decomposition

We have projectors $H d$ and $d H$ onto

- Exact/closed vector space $\mathcal{E}(U)=i m(d H)=\operatorname{ker}(d)$,
- Antiexact module $\mathcal{A}(U)=i m(H d)=\operatorname{ker}(H)$,
- $\Lambda^{*}(U)=\mathcal{E}(U) \oplus \mathcal{A}(U)$.

Why $H$ is so interesting?

$$
\begin{equation*}
H^{2}=0 \tag{9}
\end{equation*}
$$

That gives $\left(H d+d H=I-s_{x_{0}}^{*}\right)$

$$
\begin{equation*}
(H d)^{2}=H d, \quad(d H)^{2}=d H \tag{10}
\end{equation*}
$$

## Geometric decomposition

We have projectors $H d$ and $d H$ onto

- Exact/closed vector space $\mathcal{E}(U)=i m(d H)=\operatorname{ker}(d)$,
- Antiexact module $\mathcal{A}(U)=i m(H d)=\operatorname{ker}(H)$,
- $\Lambda^{*}(U)=\mathcal{E}(U) \oplus \mathcal{A}(U)$.

Is it useful?

The Poincaré lemma

Solve (on starshaped $U$ ):

$$
\begin{equation*}
d \alpha=J \tag{11}
\end{equation*}
$$

- Conclusion: $d J=0$, i.e., $J \in \mathcal{E}(U)$, i.e., $J=d H J$,
- $d(\alpha-H J)=0$, i.e., $\alpha-H J \in \mathcal{E}(U)$,
- $\alpha=c+H J$, where $c \in \mathcal{E}(U)=\operatorname{ker}(d)$.


## Replacing:


we have matching with a simple ODE $\frac{d x(t)}{d t}=f(t)$ and its solution $x=C+\int f$.

The Poincaré lemma

Solve (on starshaped $U$ ):

$$
\begin{equation*}
d \alpha=J \tag{11}
\end{equation*}
$$

- Conclusion: $d J=0$, i.e., $J \in \mathcal{E}(U)$, i.e., $J=d H J$,
- $d(\alpha-H J)=0$, i.e., $\alpha-H J \in \mathcal{E}(U)$,
- $\alpha=c+H J$, where $c \in \mathcal{E}(U)=\operatorname{ker}(d)$.


## Replacing:


we have matching with a simple ODE $\frac{d x(t)}{d t}=f(t)$ and its solution $x=C+\int f$.

The Poincaré lemma

Solve (on starshaped $U$ ):

$$
\begin{equation*}
d \alpha=J \tag{11}
\end{equation*}
$$

- Conclusion: $d J=0$, i.e., $J \in \mathcal{E}(U)$, i.e., $J=d H J$,
- $d(\alpha-H J)=0$, i.e., $\alpha-H J \in \mathcal{E}(U)$,


## Replacing:



The Poincaré lemma

Solve (on starshaped $U$ ):

$$
\begin{equation*}
d \alpha=J \tag{11}
\end{equation*}
$$

- Conclusion: $d J=0$, i.e., $J \in \mathcal{E}(U)$, i.e., $J=d H J$,
- $d(\alpha-H J)=0$, i.e., $\alpha-H J \in \mathcal{E}(U)$,
- $\alpha=c+H J$, where $c \in \mathcal{E}(U)=\operatorname{ker}(d)$.


Solve (on starshaped $U$ ):

$$
\begin{equation*}
d \alpha=J \tag{11}
\end{equation*}
$$

- Conclusion: $d J=0$, i.e., $J \in \mathcal{E}(U)$, i.e., $J=d H J$,
- $d(\alpha-H J)=0$, i.e., $\alpha-H J \in \mathcal{E}(U)$,
- $\alpha=c+H J$, where $c \in \mathcal{E}(U)=\operatorname{ker}(d)$.

Replacing:

$$
\begin{gather*}
d \longleftrightarrow \frac{d}{d x}  \tag{12}\\
\int \longleftrightarrow H
\end{gather*}
$$

we have matching with a simple ODE $\frac{d x(t)}{d t}=f(t)$ and its solution $x=C+\int f$.

The Poincaré lemma

$$
\begin{equation*}
d \alpha=J \tag{13}
\end{equation*}
$$

What if $d J \neq 0$ ?
Then

$$
\begin{equation*}
J=J_{e}+J_{a} \in \mathcal{E} \oplus \mathcal{A}, \quad J_{a}=H d J \neq 0 \tag{14}
\end{equation*}
$$

so

$$
\begin{equation*}
\underbrace{d \alpha-J_{e}}_{\mathcal{E}}-\underbrace{J_{a}}_{\mathcal{A}}=0, \tag{15}
\end{equation*}
$$

and therefore, $J_{a}=0$ - a contradiction!
We must add additional (antiexact) term. There is plenty of options, however, one is

$$
\begin{equation*}
d \alpha+A \wedge \alpha=J_{e}+J_{a}, \tag{16}
\end{equation*}
$$

for some $A \in \Lambda^{1}(U)$. ('Cartan-like minimal coupling') Situation similar to non-autonomous ODEs - time dependence is related to the interaction with other part of the system.


The Poincaré lemma

$$
\begin{equation*}
d \alpha=J \tag{13}
\end{equation*}
$$

What if $d J \neq 0$ ?

$$
\begin{equation*}
J=J_{e}+J_{a} \in \mathcal{E} \oplus \mathcal{A}, \quad J_{a}=H d J \neq 0 \tag{14}
\end{equation*}
$$

SO

and therefore, $J_{a}=0$ - a contradiction!
We must add additional (antiexact) term. There is plenty of options, however, one is

$$
\begin{equation*}
d \alpha+A \wedge \alpha=J_{e}+J_{a}, \tag{16}
\end{equation*}
$$

for some $A \in \Lambda^{1}(U)$. ('Cartan-like minimal coupling') Situation similar to non-autonomous ODEs - time dependence is related to the interaction with other part of the system.

The Poincaré lemma

$$
\begin{equation*}
d \alpha=J \tag{13}
\end{equation*}
$$

What if $d J \neq 0$ ?
Then

$$
\begin{equation*}
J=J_{e}+J_{a} \in \mathcal{E} \oplus \mathcal{A}, \quad J_{a}=H d J \neq 0 \tag{14}
\end{equation*}
$$



## and therefore, $J_{a}=0-$ a contradiction!

We must add additional (antiexact) term. There is plenty of options, however, one is

$$
\begin{equation*}
d \alpha+A \wedge \alpha=J_{e}+J_{a} \tag{16}
\end{equation*}
$$

for some $A \in \Lambda^{1}(U)$. ('Cartan-like minimal coupling') Situation similar to non-autonomous ODEs - time dependence is related to the interaction with other part of the system

The Poincaré lemma

$$
\begin{equation*}
d \alpha=J \tag{13}
\end{equation*}
$$

What if $d J \neq 0$ ?
Then

$$
\begin{equation*}
J=J_{e}+J_{a} \in \mathcal{E} \oplus \mathcal{A}, \quad J_{a}=H d J \neq 0 \tag{14}
\end{equation*}
$$

SO

$$
\begin{equation*}
\underbrace{d \alpha-J_{e}}_{\mathcal{E}}-\underbrace{J_{a}}_{\mathcal{A}}=0, \tag{15}
\end{equation*}
$$

and therefore, $J_{a}=0-$ a contradiction!
We must add additional (antiexact) term. There is plenty of options, however, one is

$$
d \alpha+A \wedge \alpha=J_{e}+J_{a}
$$

for some $A \in \Lambda^{1}(U)$. ('Cartan-like minimal coupling') Situation similar to non-autonomous ODEs - time dependence is related to the interaction with other part of the system

The Poincaré lemma

$$
\begin{equation*}
d \alpha=J \tag{13}
\end{equation*}
$$

What if $d J \neq 0$ ?
Then

$$
\begin{equation*}
J=J_{e}+J_{a} \in \mathcal{E} \oplus \mathcal{A}, \quad J_{a}=H d J \neq 0 \tag{14}
\end{equation*}
$$

so

$$
\begin{equation*}
\underbrace{d \alpha-J_{e}}_{\mathcal{E}}-\underbrace{J_{a}}_{\mathcal{A}}=0, \tag{15}
\end{equation*}
$$

and therefore, $J_{a}=0$ - a contradiction!
options, however, one is

$$
d \alpha+A \wedge \alpha=J_{e}+J_{a}
$$

for some $A \in \Lambda^{1}(U)$. ('Cartan-like minimal coupling') Situation
similar to non-autonomous ODEs - time dependence is related to

The Poincaré lemma

$$
\begin{equation*}
d \alpha=J \tag{13}
\end{equation*}
$$

What if $d J \neq 0$ ?
Then

$$
\begin{equation*}
J=J_{e}+J_{a} \in \mathcal{E} \oplus \mathcal{A}, \quad J_{a}=H d J \neq 0 \tag{14}
\end{equation*}
$$

so

$$
\begin{equation*}
\underbrace{d \alpha-J_{e}}_{\mathcal{E}}-\underbrace{J_{a}}_{\mathcal{A}}=0, \tag{15}
\end{equation*}
$$

and therefore, $J_{a}=0$ - a contradiction!
We must add additional (antiexact) term.
There is plenty of
options, however, one is

$$
d \alpha+A \wedge \alpha=J_{e}+J_{a},
$$

for some $A \in \Lambda^{1}(U)$. ('Cartan-like minimal coupling') Situation
similar to non-autonomous ODEs - time dependence is related to

$$
\begin{equation*}
d \alpha=J \tag{13}
\end{equation*}
$$

What if $d J \neq 0$ ?
Then

$$
\begin{equation*}
J=J_{e}+J_{a} \in \mathcal{E} \oplus \mathcal{A}, \quad J_{a}=H d J \neq 0 \tag{14}
\end{equation*}
$$

so

$$
\begin{equation*}
\underbrace{d \alpha-J_{e}}_{\mathcal{E}}-\underbrace{J_{a}}_{\mathcal{A}}=0 \tag{15}
\end{equation*}
$$

and therefore, $J_{a}=0$ - a contradiction!
We must add additional (antiexact) term. There is plenty of options, however, one is

$$
\begin{equation*}
d \alpha+A \wedge \alpha=J_{e}+J_{a} \tag{16}
\end{equation*}
$$

for some $A \in \Lambda^{1}(U)$. ('Cartan-like minimal coupling')

$$
\begin{equation*}
d \alpha=J \tag{13}
\end{equation*}
$$

What if $d J \neq 0$ ?
Then

$$
\begin{equation*}
J=J_{e}+J_{a} \in \mathcal{E} \oplus \mathcal{A}, \quad J_{a}=H d J \neq 0 \tag{14}
\end{equation*}
$$

so

$$
\begin{equation*}
\underbrace{d \alpha-J_{e}}_{\mathcal{E}}-\underbrace{J_{a}}_{\mathcal{A}}=0, \tag{15}
\end{equation*}
$$

and therefore, $J_{a}=0-$ a contradiction!
We must add additional (antiexact) term. There is plenty of options, however, one is

$$
\begin{equation*}
d \alpha+A \wedge \alpha=J_{e}+J_{a} \tag{16}
\end{equation*}
$$

for some $A \in \Lambda^{1}(U)$. ('Cartan-like minimal coupling') Situation similar to non-autonomous ODEs - time dependence is related to the interaction with other part of the system.

## Covariant exterior derivative


$U \times V \subset \mathbb{R}^{n} \times \mathbb{R}^{k}, U$ - star-shaped. Looks like a local trivialization of a vector bundle.

$U \times V \subset \mathbb{R}^{n} \times \mathbb{R}^{k}, U$ - star-shaped. Looks like a local trivialization of a vector bundle.
We are interested in $V$-valued differential forms: $\Lambda(U, V)$.

## Vector-valued differential forms



Sections of associated vector bundle are in 1:1 correspondence with equivariant horizontal forms.

## Covariant exterior derivative

$$
\begin{equation*}
d^{\nabla}:=d+A \wedge_{-}, \tag{17}
\end{equation*}
$$

for $A \in \Lambda^{1}(U, \operatorname{End}(V))$ (usually with additional properties related to underlying bundle).


- $G \rightarrow P \rightarrow M$ - a principal bundle
- $F=P \times_{C} V$ - associated vector bundle
- $\Lambda_{b}^{0}(P, V)$ - basic forms


## Covariant exterior derivative

$$
\begin{equation*}
d^{\nabla}:=d+A \wedge_{-}, \tag{17}
\end{equation*}
$$

for $A \in \Lambda^{1}(U, \operatorname{End}(V))$ (usually with additional properties related to underlying bundle).
Reminder:
$\Lambda_{b}^{0}(P, V) \xrightarrow{d^{\nabla}} \Lambda_{b}^{0}(P, V)$


- $G \rightarrow P \rightarrow M$ - a principal bundle
- $E=P \times{ }_{G} V$ - associated vector bundle
- $\Lambda_{b}^{0}(P, V)$ - basic forms


## (Homogenous) parallel transport equation

$$
\begin{equation*}
d^{\nabla} \phi=0, \quad \phi \in \Lambda^{k}(U, V), \tag{18}
\end{equation*}
$$

with the "intial/boundary" condition $d H \phi=c \in \mathcal{E}(U, V)$.

## Decompose

where

$$
A \wedge \phi_{2}=0
$$

An element

$$
d \phi_{1}+A \wedge \phi_{1}=-d \phi_{2}
$$

is a 'gauge mode' - nonuniquness of the solution.

## (Homogenous) parallel transport equation

$$
\begin{equation*}
d^{\nabla} \phi=0, \quad \phi \in \Lambda^{k}(U, V) \tag{18}
\end{equation*}
$$

with the "intial/boundary" condition $d H \phi=c \in \mathcal{E}(U, V)$.
Decompose

$$
\phi=\phi_{1}+\phi_{2},
$$

where

$$
A \wedge \phi_{2}=0
$$

## An element

$$
d \phi_{1}+A \wedge \phi_{1}=-d \phi_{2} .
$$

is a 'gauge mode' - nonuniquness of the solution.

## (Homogenous) parallel transport equation

$$
\begin{equation*}
d^{\nabla} \phi=0, \quad \phi \in \Lambda^{k}(U, V) \tag{18}
\end{equation*}
$$

with the "intial/boundary" condition $d H \phi=c \in \mathcal{E}(U, V)$.
Decompose

$$
\phi=\phi_{1}+\phi_{2},
$$

where

$$
A \wedge \phi_{2}=0
$$

## (Homogenous) parallel transport equation

$$
\begin{equation*}
d^{\nabla} \phi=0, \quad \phi \in \Lambda^{k}(U, V), \tag{18}
\end{equation*}
$$

with the "intial/boundary" condition $d H \phi=c \in \mathcal{E}(U, V)$.
Decompose

$$
\phi=\phi_{1}+\phi_{2},
$$

where

$$
\begin{gathered}
A \wedge \phi_{2}=0 \\
d \phi_{1}+A \wedge \phi_{1}=-d \phi_{2}
\end{gathered}
$$

An element

is a 'gauge mode' - nonuniquness of the solution.

## (Homogenous) parallel transport equation

$$
\begin{equation*}
d^{\nabla} \phi=0, \quad \phi \in \Lambda^{k}(U, V), \tag{18}
\end{equation*}
$$

with the "intial/boundary" condition $d H \phi=c \in \mathcal{E}(U, V)$.
Decompose

$$
\phi=\phi_{1}+\phi_{2},
$$

where

$$
\begin{gathered}
A \wedge \phi_{2}=0 \\
d \phi_{1}+A \wedge \phi_{1}=-d \phi_{2}
\end{gathered}
$$

An element

$$
\phi_{2} \in \mathcal{E}(U, V) \cap \operatorname{ker}\left(A \wedge_{-}\right)
$$

is a 'gauge mode' - nonuniquness of the solution.

## (Homogenous) parallel transport equation

$$
\begin{equation*}
d^{\nabla} \phi=0, \quad \phi \in \Lambda^{k}(U, V) \backslash \operatorname{ker}\left(A \wedge_{-}\right), \tag{19}
\end{equation*}
$$

with the "intial/boundary" condition $d H \phi=c \in \mathcal{E}(U, V)$.
Replace with:

$$
d \phi+\lambda A \wedge \phi=0, \quad \lambda \neq 0
$$

## Substitute a formal power series:

Compare the $O\left(\lambda^{k}\right)$ terms:

## (Homogenous) parallel transport equation

$$
\begin{equation*}
d^{\nabla} \phi=0, \quad \phi \in \Lambda^{k}(U, V) \backslash \operatorname{ker}\left(A \wedge_{-}\right), \tag{19}
\end{equation*}
$$

with the "intial/boundary" condition $d H \phi=c \in \mathcal{E}(U, V)$.
Replace with:

$$
\begin{equation*}
d \phi+\lambda A \wedge \phi=0, \quad \lambda \neq 0 \tag{20}
\end{equation*}
$$

Substitute a formal power series:

## (Homogenous) parallel transport equation

$$
\begin{equation*}
d^{\nabla} \phi=0, \quad \phi \in \Lambda^{k}(U, V) \backslash \operatorname{ker}(A \wedge-), \tag{19}
\end{equation*}
$$

with the "intial/boundary" condition $d H \phi=c \in \mathcal{E}(U, V)$.
Replace with:

$$
\begin{equation*}
d \phi+\lambda A \wedge \phi=0, \quad \lambda \neq 0 \tag{20}
\end{equation*}
$$

Substitute a formal power series:

$$
\begin{equation*}
\phi=\phi_{0}+\lambda \phi_{1}+\lambda^{2} \phi_{2}+\ldots, \tag{21}
\end{equation*}
$$

Compare the $O\left(\lambda^{k}\right)$ terms:

## (Homogenous) parallel transport equation

$$
\begin{equation*}
d^{\nabla} \phi=0, \quad \phi \in \Lambda^{k}(U, V) \backslash \operatorname{ker}(A \wedge-), \tag{19}
\end{equation*}
$$

with the "intial/boundary" condition $d H \phi=c \in \mathcal{E}(U, V)$.
Replace with:

$$
\begin{equation*}
d \phi+\lambda A \wedge \phi=0, \quad \lambda \neq 0 \tag{20}
\end{equation*}
$$

Substitute a formal power series:

$$
\begin{equation*}
\phi=\phi_{0}+\lambda \phi_{1}+\lambda^{2} \phi_{2}+\ldots, \tag{21}
\end{equation*}
$$

Compare the $O\left(\lambda^{k}\right)$ terms:

- $O(1): d \phi_{0}=0$


## (Homogenous) parallel transport equation

$$
\begin{equation*}
d^{\nabla} \phi=0, \quad \phi \in \Lambda^{k}(U, V) \backslash \operatorname{ker}(A \wedge-), \tag{19}
\end{equation*}
$$

with the "intial/boundary" condition $d H \phi=c \in \mathcal{E}(U, V)$.
Replace with:

$$
\begin{equation*}
d \phi+\lambda A \wedge \phi=0, \quad \lambda \neq 0 \tag{20}
\end{equation*}
$$

Substitute a formal power series:

$$
\begin{equation*}
\phi=\phi_{0}+\lambda \phi_{1}+\lambda^{2} \phi_{2}+\ldots, \tag{21}
\end{equation*}
$$

Compare the $O\left(\lambda^{k}\right)$ terms:

- $O(1): d \phi_{0}=0$
- $O\left(\lambda^{1}\right): d \phi_{1}+A \wedge \phi_{0}=0$


## (Homogenous) parallel transport equation

$$
\begin{equation*}
d^{\nabla} \phi=0, \quad \phi \in \Lambda^{k}(U, V) \backslash \operatorname{ker}(A \wedge-), \tag{19}
\end{equation*}
$$

with the "intial/boundary" condition $d H \phi=c \in \mathcal{E}(U, V)$.
Replace with:

$$
\begin{equation*}
d \phi+\lambda A \wedge \phi=0, \quad \lambda \neq 0 \tag{20}
\end{equation*}
$$

Substitute a formal power series:

$$
\begin{equation*}
\phi=\phi_{0}+\lambda \phi_{1}+\lambda^{2} \phi_{2}+\ldots, \tag{21}
\end{equation*}
$$

Compare the $O\left(\lambda^{k}\right)$ terms:

- $O(1): d \phi_{0}=0$
- $O\left(\lambda^{1}\right): d \phi_{1}+A \wedge \phi_{0}=0$
- $O\left(\lambda^{l}\right): d \phi_{l}+A \wedge \phi_{l-1}=0$.


## (Homogenous) parallel transport equation

...and solve iteratively:

- $O(1): d \phi_{0}=0$, so $\phi_{0}=d \alpha_{0}$ for arbitrary $\alpha_{0}$.
solution is


Solution
We have a power series solution:

## (Homogenous) parallel transport equation

...and solve iteratively:

- $O(1): d \phi_{0}=0$, so $\phi_{0}=d \alpha_{0}$ for arbitrary $\alpha_{0}$.
- $O\left(\lambda^{1}\right): d \phi_{1}+A \wedge \phi_{0}=0$, so $d\left(A \wedge \phi_{0}\right)=0$,
i.e., $A \wedge \phi_{0}=d H\left(A \wedge \phi_{0}\right)$, so $d\left(\phi_{1}+H\left(A \wedge \phi_{0}\right)\right)=0$, and the solution is

$$
\begin{equation*}
\phi_{1}=d \alpha_{1}-H\left(A \wedge \phi_{0}\right), \tag{22}
\end{equation*}
$$

for $\alpha_{1} \in \Lambda^{k-1}(U, V)$.

## (Homogenous) parallel transport equation

...and solve iteratively:

- $O(1): d \phi_{0}=0$, so $\phi_{0}=d \alpha_{0}$ for arbitrary $\alpha_{0}$.
- $O\left(\lambda^{1}\right): d \phi_{1}+A \wedge \phi_{0}=0$, so $d\left(A \wedge \phi_{0}\right)=0$, i.e., $A \wedge \phi_{0}=d H\left(A \wedge \phi_{0}\right)$, so $d\left(\phi_{1}+H\left(A \wedge \phi_{0}\right)\right)=0$, and the solution is

$$
\begin{equation*}
\phi_{1}=d \alpha_{1}-H\left(A \wedge \phi_{0}\right), \tag{22}
\end{equation*}
$$

for $\alpha_{1} \in \Lambda^{k-1}(U, V)$.

- $O\left(\lambda^{l}\right): \phi_{l}=d \alpha_{l}-H\left(A \wedge \phi_{l-1}\right)$.


## (Homogenous) parallel transport equation

...and solve iteratively:

- $O(1): d \phi_{0}=0$, so $\phi_{0}=d \alpha_{0}$ for arbitrary $\alpha_{0}$.
- $O\left(\lambda^{1}\right): d \phi_{1}+A \wedge \phi_{0}=0$, so $d\left(A \wedge \phi_{0}\right)=0$, i.e., $A \wedge \phi_{0}=d H\left(A \wedge \phi_{0}\right)$, so $d\left(\phi_{1}+H\left(A \wedge \phi_{0}\right)\right)=0$, and the solution is

$$
\begin{equation*}
\phi_{1}=d \alpha_{1}-H\left(A \wedge \phi_{0}\right), \tag{22}
\end{equation*}
$$

for $\alpha_{1} \in \Lambda^{k-1}(U, V)$.

- ...
- $O\left(\lambda^{l}\right): \phi_{l}=d \alpha_{l}-H\left(A \wedge \phi_{l-1}\right)$.


## Solution

We have a power series solution:

$$
\begin{equation*}
\phi=\sum_{l=0}^{\infty}(-1)^{l}\left(H\left(A \wedge_{-}\right)\right)^{l} c \tag{23}
\end{equation*}
$$

where $c=\sum_{l} d \alpha_{l} \in \Lambda^{k-1}(U, V)$ is an arbitrary form, and $\left(H\left(A \wedge_{-}\right)\right)^{0}=I d$.

## Exact-inhomogenous parallel transport equation

The unique solution of

$$
\begin{equation*}
d^{\nabla} \phi=J \tag{24}
\end{equation*}
$$

for $\phi \in \Lambda^{k}(U, V) \backslash \operatorname{ker}\left(A \wedge_{-}\right), A \in \Lambda^{1}(U, \operatorname{End}(V))$,
$J \in \mathcal{E}^{k+1}(U, V)$, with $d H \phi=c \in \mathcal{E}(U, V)$ is

$$
\begin{equation*}
\phi=\phi_{H}+\phi_{I}, \quad \phi_{I}=\sum_{l=0}^{\infty}(-1)^{l}\left(H\left(A \wedge_{-}\right)\right)^{l} H J \tag{25}
\end{equation*}
$$

where $\phi_{H}$ is a solution of homogenous equation $(J=0)$.
The series in (25) is convergent for $\left\|x-x_{0}\right\|<\frac{k}{\|A\|_{\infty}}$, where the supremum norm is taken over the line
$L=\left\{x_{0}+t\left(x-x_{0}\right) \mid t \in[0 ; 1]\right\}$.

The solution of the inhomogeneous covariant constancy equation

$$
\begin{equation*}
d^{\nabla} \phi=J, \quad d^{\nabla}=d+A \wedge_{-}, \tag{26}
\end{equation*}
$$

where $\phi \in \Lambda^{k}(U, V), A \in \Lambda^{1}(U, V), J \in \Lambda^{k+1}(U, V)$ is given by

$$
\begin{equation*}
\phi=\phi_{1}+\phi_{2}+\phi_{3}, \tag{27}
\end{equation*}
$$

where $\phi_{1}$ fulfils

$$
\begin{equation*}
d^{\nabla} \phi_{1}=J_{e}-d\left(\phi_{2}+\phi_{3}\right), \tag{28}
\end{equation*}
$$

and $\phi_{2}$ fulfils (constraint)

$$
\begin{equation*}
A \wedge \phi_{2}=J_{a} \tag{29}
\end{equation*}
$$

where $J_{e}:=d H J$ is the exact part of $J$, and $J_{a}:=H d J$ is the antiexact part of $J$. The $\phi_{3} \in \operatorname{ker}\left(A \wedge_{-}\right)$is an arbitrary form. Moreover $A \wedge \phi_{1} \in \mathcal{E}^{k+1}(U, V)$ and $A \wedge \phi_{2} \in \mathcal{A}^{k+1}(U, V)$.

## Associated vector bundles

Is solution a base form on associated vector bundle?

- Equivariance of solutions: Results from the uniqueness of the solution (of parallel transport PDE).
e Horizontality: Not almays! Not every solution corresponds to section of associated vector bundle - we get no miracles!


## Associated vector bundles

Is solution a base form on associated vector bundle?

- Equivariance of solutions: Results from the uniqueness of the solution (of parallel transport PDE).
- Horizontality: Not always! Not every solution corresponds to section of associated vector bundle - we get no miracles!


## Associated vector bundles

Is solution a base form on associated vector bundle?

- Equivariance of solutions: Results from the uniqueness of the solution (of parallel transport PDE).
- Horizontality: Not always! Not every solution corresponds to section of associated vector bundle - we get no miracles!

The torsion equation:

$$
\begin{equation*}
d \omega^{\mu}+\omega_{\nu}^{\mu} \wedge \omega^{\nu}=T^{\mu} \tag{30}
\end{equation*}
$$

where $\omega_{\nu}^{\mu}$ is fixed - second structure equation. It is solved by above methods.
The second structure equation can also be solved by homotopy
operator, see our draft.

## Relation to Cartan structure equations

The torsion equation:

$$
\begin{equation*}
d \omega^{\mu}+\omega_{\nu}^{\mu} \wedge \omega^{\nu}=T^{\mu} \tag{30}
\end{equation*}
$$

where $\omega_{\nu}^{\mu}$ is fixed - second structure equation. It is solved by above methods.
The second structure equation can also be solved by homotopy operator, see our draft.

## Other applications

## Other applications

Plenty of equations of mathematical physics on Riemannian manifolds, e.g., Maxwell equations:

$$
\begin{equation*}
D F=J \tag{31}
\end{equation*}
$$

where the Dirac(-Kähler) operator is

$$
\begin{equation*}
D=d-\delta \tag{32}
\end{equation*}
$$

## Other applications

For Riemannian manifolds, Hodge star duals to parallel transport equation:

$$
\begin{equation*}
\delta \phi+i_{A^{\sharp}} \phi=J . \tag{33}
\end{equation*}
$$

Use $i_{A^{\sharp}} \star \phi=\star(\phi \wedge A)$.
There is linear (co)homotopy operator for codifferential
where $\eta \omega=(-)^{|\omega|} \omega$.

## Other applications

For Riemannian manifolds, Hodge star duals to parallel transport equation:

$$
\begin{equation*}
\delta \phi+i_{A^{\sharp}} \phi=J . \tag{33}
\end{equation*}
$$

Use $i_{A^{\sharp}} \star \phi=\star(\phi \wedge A)$.
There is linear (co)homotopy operator for codifferential

$$
\begin{equation*}
h=\eta \star^{-1} H \star, \tag{34}
\end{equation*}
$$

where $\eta \omega=(-)^{|\omega|} \omega$.

## Other applications

Curvature (algebraic) equation treated as a differential equation:

$$
\begin{equation*}
F \wedge \phi=d^{\nabla} d^{\nabla} \phi=J \tag{35}
\end{equation*}
$$

Replace second (covariant) order EDE to the system of first order EDEs

## Other applications

Curvature (algebraic) equation treated as a differential equation:

$$
\begin{equation*}
F \wedge \phi=d^{\nabla} d^{\nabla} \phi=J \tag{35}
\end{equation*}
$$

Replace second (covariant) order EDE to the system of first order EDEs

$$
\left\{\begin{array}{c}
d^{\nabla} \phi_{2}=J  \tag{36}\\
d^{\nabla} \phi_{1}=\phi_{2}
\end{array}\right.
$$

## Other applications

More generally, having,

$$
\begin{equation*}
D_{i}=d+A_{i} \wedge_{-}, \quad \square_{i}=\delta+i_{A_{-}^{\sharp-}} \tag{37}
\end{equation*}
$$

we can construct geometr-based differential equation

$$
\begin{equation*}
D_{1}^{i_{1}} \square_{2}^{i_{2}} \ldots \phi=J \tag{38}
\end{equation*}
$$

Again, replace equation with system of equations and apply previous ideas. Example:
is replaced by


## Other applications

More generally, having,

$$
\begin{equation*}
D_{i}=d+A_{i} \wedge_{-}, \quad \square_{i}=\delta+i_{A_{-}^{\sharp-}} \tag{37}
\end{equation*}
$$

we can construct geometr-based differential equation

$$
\begin{equation*}
D_{1}^{i_{1}} \square_{2}^{i_{2}} \ldots \phi=J \tag{38}
\end{equation*}
$$

Again, replace equation with system of equations and apply previous ideas. $\qquad$
is replaced by


## Other applications

More generally, having,

$$
\begin{equation*}
D_{i}=d+A_{i} \wedge_{-}, \quad \mathrm{\square}_{i}=\delta+i_{A^{\sharp-}} \tag{37}
\end{equation*}
$$

we can construct geometr-based differential equation

$$
\begin{equation*}
D_{1}^{i_{1}} \square_{2}^{i_{2}} \ldots \phi=J \tag{38}
\end{equation*}
$$

Again, replace equation with system of equations and apply previous ideas. Example:

$$
\begin{equation*}
d \delta \phi=J \tag{39}
\end{equation*}
$$

is replaced by

$$
\left\{\begin{array}{c}
d \phi_{2}=J  \tag{40}\\
\delta \phi_{1}=\phi_{2}
\end{array}\right.
$$

which can be easily solved.

## Other applications

## Variational calculus:

- It is known that vertical derivative of jet bundle has a vertical homotopy operator - Vainberg-Tonti Lagrangian.
- It was however not known that the obstacle to variationality of a differential equation('as it stands') is associated with antiexact vertical form.
- This is associated to non-symmetric part of Euler-Lagrange differential operator.


## Other applications

## Variational calculus:

- It is known that vertical derivative of jet bundle has a vertical homotopy operator - Vainberg-Tonti Lagrangian.
- It was however not known that the obstacle to variationality of a differential equation('as it stands') is associated with antiexact vertical form.
- This is associated to non-symmetric part of Euler-Lagrange differential operator.


## Other applications

## Variational calculus:

- It is known that vertical derivative of jet bundle has a vertical homotopy operator - Vainberg-Tonti Lagrangian.
- It was however not known that the obstacle to variationality of a differential equation('as it stands') is associated with antiexact vertical form.
- This is associated to non-symmetric part of Euler-Lagrange differential operator.


## Other applications

Feynman graphs:

- Using integration by parts, we can express any Feynman integral $I$ as a linear combination of master integrals $\vec{I}=\left\{I_{1}, \ldots, I_{n}\right\}$.
- The master integrals fulfil the equation

$$
(d+A) \vec{I}=0, A \in \Lambda^{1}\left(\mathbb{R}^{N}, \mathbb{R}^{n \times n}\right),
$$

where $N$ - number of kinematic variables. $A$ is a flat connection, i.e., $d A+A \wedge A=0$

- For more see: Stefan Weinzierl, Feynman Integrals. A Comprehensive Treatment for Students and Researchers, Springer 2022


## Other applications

Feynman graphs:

- Using integration by parts, we can express any Feynman integral $I$ as a linear combination of master integrals $\vec{I}=\left\{I_{1}, \ldots, I_{n}\right\}$.
- The master integrals fulfil the equation

$$
\begin{equation*}
(d+A) \vec{I}=0, A \in \Lambda^{1}\left(\mathbb{R}^{N}, \mathbb{R}^{n \times n}\right) \tag{41}
\end{equation*}
$$

where $N$ - number of kinematic variables. $A$ is a flat connection, i.e., $d A+A \wedge A=0$.

- For more see: Stefan Weinzierl, Feynman Integrals. A Comprehensive Treatment for Students and Researchers, Springer 2022


## Other applications

## Feynman graphs:

- Using integration by parts, we can express any Feynman integral $I$ as a linear combination of master integrals $\vec{I}=\left\{I_{1}, \ldots, I_{n}\right\}$.
- The master integrals fulfil the equation

$$
\begin{equation*}
(d+A) \vec{I}=0, A \in \Lambda^{1}\left(\mathbb{R}^{N}, \mathbb{R}^{n \times n}\right) \tag{41}
\end{equation*}
$$

where $N$ - number of kinematic variables. $A$ is a flat connection, i.e., $d A+A \wedge A=0$.

- For more see: Stefan Weinzierl, Feynman Integrals. $A$ Comprehensive Treatment for Students and Researchers, Springer 2022


## Summary

- The Poincare lemma and resulting homotopy operators have nice 'operator' properties.
- On a star-shaped subset of a fibered set we can solve "geometry-based differential equation" using homotopy operator in the same way as integral is used for ODE.
- (Almost) any such local problem can be easily solved using our approach.
- "Sheafication" is still missing to go from local to global view. Then the topology of underlying space starts to play a role.
- What is not yet done: Einstein equations, Green's function for Laplace-Beltrami operator.
- The Poincare lemma and resulting homotopy operators have nice 'operator' properties.
- On a star-shaped subset of a fibered set we can solve "geometry-based differential equation" using homotopy operator in the same way as integral is used for ODE.
- (Almost) any such local problem can be easily solved using our approach.
- "Sheafication" is still missing to go from local to global view. Then the topology of underlying space starts to play a role.
- What is not yet done: Einstein equations, Green's function for Laplace-Beltrami operator.
- The Poincare lemma and resulting homotopy operators have nice 'operator' properties.
- On a star-shaped subset of a fibered set we can solve "geometry-based differential equation" using homotopy operator in the same way as integral is used for ODE.
- (Almost) any such local problem can be easily solved using our approach.
- "Sheafication" is still missing to go from local to global view. Then the topology of underlying space starts to play a role.
- What is not yet done: Einstein equations, Green's function for Laplace-Beltrami operator.
- The Poincare lemma and resulting homotopy operators have nice 'operator' properties.
- On a star-shaped subset of a fibered set we can solve "geometry-based differential equation" using homotopy operator in the same way as integral is used for ODE.
- (Almost) any such local problem can be easily solved using our approach.
- "Sheafication" is still missing to go from local to global view. Then the topology of underlying space starts to play a role.

Laplace-Beltrami operator.

- The Poincare lemma and resulting homotopy operators have nice 'operator' properties.
- On a star-shaped subset of a fibered set we can solve "geometry-based differential equation" using homotopy operator in the same way as integral is used for ODE.
- (Almost) any such local problem can be easily solved using our approach.
- "Sheafication" is still missing to go from local to global view. Then the topology of underlying space starts to play a role.
- What is not yet done: Einstein equations, Green's function for Laplace-Beltrami operator.


## Acknowledgement

This research was supported by the GACR grant GA22-00091S and Masaryk University grant MUNI/A/1099/2022.

## Bibliography

R D.G.B. Edelen, Applied Exterior Calculus, Dover 2011
R.A. Kycia, The Poincare lemma, antiexact forms, and fermionic quantum harmonic oscillator, Results Math 75, 122 (2020)
R. R.A. Kycia, The Poincare lemma for codifferential, anticoexact forms, and applications to physics, Results Math. (2022)

目 R.A. Kycia, J. Silhan, Inverting covariant exterior derivative, arXiv: 2210.03663 [math.DG]

# Thank You for Your Attention 

Köszönöm a figyelmet

## Backup

## Link with operator calculus

## Link with operator calculus

Mimic

$$
\begin{equation*}
\frac{d}{d x} \int_{x_{0}}^{x} f(t) d t=f(x), \quad \int_{x_{0}}^{x} \frac{d f}{d t}(t) d t=f(x)-f\left(x_{0}\right), \tag{42}
\end{equation*}
$$

for $f \in C^{\infty}(\mathbb{R})$.
Bittner's operator calculus
For linear spaces $L_{0}$ and $L_{1}$ we define linear operators

- $S: L_{0} \rightarrow L_{1}$ - abstract derivative;
- $T_{q}: L_{1} \rightarrow L_{0}$ - abstract integral parametrized by $q \in \operatorname{ker}(S) \subset L_{0}$;
- $s: L_{0} \rightarrow \operatorname{ker}(S) \subset L_{0}$ - projection/limit condition;
that fulfills

$$
\begin{equation*}
S T=I, \quad T S=I-s \tag{43}
\end{equation*}
$$

Elements of $\operatorname{ker}(S)$ are called constants (of $S$ ).

## Link with operator calculus

Mimic

$$
\begin{equation*}
\frac{d}{d x} \int_{x_{0}}^{x} f(t) d t=f(x), \quad \int_{x_{0}}^{x} \frac{d f}{d t}(t) d t=f(x)-f\left(x_{0}\right) \tag{42}
\end{equation*}
$$

for $f \in C^{\infty}(\mathbb{R})$.

## Bittner's operator calculus

For linear spaces $L_{0}$ and $L_{1}$ we define linear operators

- $S: L_{0} \rightarrow L_{1}$ - abstract derivative;
- $T_{q}: L_{1} \rightarrow L_{0}$ - abstract integral parametrized by $q \in \operatorname{ker}(S) \subset L_{0}$;
- $s: L_{0} \rightarrow \operatorname{ker}(S) \subset L_{0}$ - projection/limit condition; that fulfills

$$
\begin{equation*}
S T=I, \quad T S=I-s . \tag{43}
\end{equation*}
$$

Elements of $\operatorname{ker}(S)$ are called constants (of $S$ ).

## Link with operator calculus

Define $L_{0}=\mathcal{E} \oplus \mathcal{A}$ and $L_{1}=\mathcal{E}$.


We have:

- $S:=d: L_{0} \rightarrow L_{1}$ - derivative with $\operatorname{ker}(S)=\operatorname{ker}(d)=\mathcal{E}$
- $T:=H: L_{1} \rightarrow \mathcal{A} \subset L_{0}$ - integral.

Obviously, $\left.S T\right|_{L_{n}}=\left.d H\right|_{\mathcal{E}}=I$ since $d H$ is the projection operator
onto $\mathcal{E}$.

## Link with operator calculus

Define $L_{0}=\mathcal{E} \oplus \mathcal{A}$ and $L_{1}=\mathcal{E}$.


We have:

- $S:=d: L_{0} \rightarrow L_{1}$ - derivative with $\operatorname{ker}(S)=\operatorname{ker}(d)=\mathcal{E}$.
- $T:=H: L_{1} \rightarrow \mathcal{A} \subset L_{0}$ - integral.


## Link with operator calculus

Define $L_{0}=\mathcal{E} \oplus \mathcal{A}$ and $L_{1}=\mathcal{E}$.


We have:

- $S:=d: L_{0} \rightarrow L_{1}$ - derivative with $\operatorname{ker}(S)=\operatorname{ker}(d)=\mathcal{E}$.
- $T:=H: L_{1} \rightarrow \mathcal{A} \subset L_{0}$ - integral.

Obviously, $\left.S T\right|_{L_{1}}=\left.d H\right|_{\mathcal{E}}=I$ since $d H$ is the projection operator onto $\mathcal{E}$.

## Link with operator calculus

In order to identify $s$ operator, we use homotopy invariance formula as

$$
\begin{equation*}
H d=I-\underbrace{\left(s_{x_{0}}^{*}+d H\right)}_{s}, \tag{44}
\end{equation*}
$$

i.e.

$$
s:=\left\{\begin{array}{llc}
s_{x_{0}}^{*} & \text { for } & \Lambda^{0}(U)  \tag{45}\\
d H & \text { for } & \Lambda^{k}(U), \quad k>0 .
\end{array}\right.
$$

Obviously, $s$ defined above is a projection operator $\left(s^{2}=s\right)$ onto $\operatorname{ker}(S)=\operatorname{ker}(d)=\mathcal{E}$.

## Link with operator calculus

In order to identify $s$ operator, we use homotopy invariance formula as

$$
\begin{equation*}
H d=I-\underbrace{\left(s_{x_{0}}^{*}+d H\right)}_{s}, \tag{44}
\end{equation*}
$$

i.e.

$$
s:=\left\{\begin{array}{llc}
s_{x_{0}}^{*} & \text { for } & \Lambda^{0}(U)  \tag{45}\\
d H & \text { for } & \Lambda^{k}(U), \quad k>0 .
\end{array}\right.
$$

Obviously, $s$ defined above is a projection operator $\left(s^{2}=s\right)$ onto $\operatorname{ker}(S)=\operatorname{ker}(d)=\mathcal{E}$.

Chen's iterated integrals

## Chen's iterated integrals (1977)

- For a (super)vector bundle $\pi: V \rightarrow M$, the connection one-form $\omega \in \Lambda^{1}(M, \operatorname{End}(V))$, construct Path Space.
- Parallel transport operator $\Phi(t): V_{\gamma(t=0)} \rightarrow V_{\gamma(t)}$, for a path $\gamma:[0 ; 1] \rightarrow M$ fulfils:
- Then the solution is the operator series

$$
\Phi^{\omega}(t)=\sum_{n=0} \Phi_{n}^{\omega}(t), \quad \Phi^{\omega}(0)=I d_{V}
$$

where $\left(t \geq s_{1} \geq \ldots \geq s_{n} \geq 0\right)$ :

## Chen's iterated integrals (1977)

- For a (super)vector bundle $\pi: V \rightarrow M$, the connection one-form $\omega \in \Lambda^{1}(M, \operatorname{End}(V))$, construct Path Space.
- Parallel transport operator $\Phi(t): V_{\gamma(t=0)} \rightarrow V_{\gamma(t)}$, for a path $\gamma:[0 ; 1] \rightarrow M$ fulfils:

$$
\begin{equation*}
\left.\frac{d \Phi^{\omega}(t)}{d t}=i_{t}^{*} \partial_{t}\right\lrcorner \omega \wedge \Phi^{\omega}(t), \quad \Phi^{\omega}(0)=I d_{V} \tag{46}
\end{equation*}
$$

where $i_{t}: M \rightarrow M \times[0,1]$ is the inclusion $i_{t}(x)=(x, t)$, $\omega \in \Lambda^{*}(M \times[0,1], \operatorname{End}(V))$.
where $\left(t \geq s_{1} \geq \ldots \geq s_{n} \geq 0\right)$ :

## Chen's iterated integrals (1977)

- For a (super)vector bundle $\pi: V \rightarrow M$, the connection one-form $\omega \in \Lambda^{1}(M, \operatorname{End}(V))$, construct Path Space.
- Parallel transport operator $\Phi(t): V_{\gamma(t=0)} \rightarrow V_{\gamma(t)}$, for a path $\gamma:[0 ; 1] \rightarrow M$ fulfils:

$$
\begin{equation*}
\left.\frac{d \Phi^{\omega}(t)}{d t}=i_{t}^{*} \partial_{t}\right\lrcorner \omega \wedge \Phi^{\omega}(t), \quad \Phi^{\omega}(0)=I d_{V} \tag{46}
\end{equation*}
$$

where $i_{t}: M \rightarrow M \times[0,1]$ is the inclusion $i_{t}(x)=(x, t)$, $\omega \in \Lambda^{*}(M \times[0,1], \operatorname{End}(V))$.

- Then the solution is the operator series

$$
\begin{equation*}
\Phi^{\omega}(t)=\sum_{n=0}^{\infty} \Phi_{n}^{\omega}(t), \quad \Phi^{\omega}(0)=I d_{V} \tag{47}
\end{equation*}
$$

where $\left(t \geq s_{1} \geq \ldots \geq s_{n} \geq 0\right)$ :

$$
\begin{gather*}
\Phi_{0}^{\omega}(t)=I d \\
\left.\Phi_{1}^{\omega}(t)=\int_{0}^{t} i_{s_{1}}^{*} \partial_{s_{1}}\right\lrcorner \omega d s_{1} \\
\left.\left.\Phi_{n \geq 2}^{\omega}(t)=\int_{0}^{t} \int_{0}^{s_{1}} \ldots \int_{0}^{s_{n-1}} i_{s_{1}}^{*} \partial_{s_{1}}\right\lrcorner \omega \wedge \ldots \wedge i_{s_{n}}^{*} \partial_{s_{n}}\right\lrcorner \omega d s_{n} \ldots d s_{1} . \tag{48}
\end{gather*}
$$


[^0]:    Geometric decomposition
    We have projectors $H d$ and $d H$ onto

    - Exact/closed vector space $\mathcal{E}(U)=i m(d H)=\operatorname{ker}(d)$,
    - Antiexact module $\mathcal{A}(U)=\operatorname{im}(H d)=\operatorname{ker}(H)$,
    - $\Lambda^{*}(U)=\mathcal{E}(U) \oplus \mathcal{A}(U)$.

