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Motivation



ODEs

Solution of
dx(t)

dt
= f(t) (1)

is

x(t) = C +

∫ t

0
dt′f(t′), C = x(0) ∈ ker

(
d

dx

)
. (2)



ODEs 2

Consider equation

dx(t)

dt
= f(t)x(t), x(0) = C. (3)

We switch to integral equation

x(t) = C +

∫ t

0
x(t′)f(t′)dt′, (4)

and iterate

x(t) = C +

∫
fC +

∫
f

∫
fC + . . . . (5)

Can we have such simple way of solving exterior differential
equation by an ’integral’ of some kind?



ODEs 2

Consider equation

dx(t)

dt
= f(t)x(t), x(0) = C. (3)

We switch to integral equation

x(t) = C +

∫ t

0
x(t′)f(t′)dt′, (4)

and iterate

x(t) = C +

∫
fC +

∫
f

∫
fC + . . . . (5)

Can we have such simple way of solving exterior differential
equation by an ’integral’ of some kind?



The Poincaré lemma



The Poincaré lemma

The Poincaré lemma

Hn(Rk) = Hn(point) =

{
R, (n = 0)
0 (n > 0)

(6)

dim(Hk)= no. of closed k-forms (dω = 0) that are not exact (not
of the form ω = dα).

Not quite useful in computations.
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The Poincaré lemma

Homotopy Invariance Formula (for linear homotopy)

Hd+ dH = I∗ − s∗x0
, (7)

where

Hω :=

∫ 1

0
K⌟ω|F (t,x)t

k−1dt, H : Λ∗(U)→ Λ∗−1(U), (8)

for ω ∈ Λk(U), K := (x− x0)
i∂i, k = deg(ω), U - star-shaped,

and linear homotopy F (t, x) = x0 + t(x− x0) interpolates between
Id and the constant map sx0 : x→ x0.

Why H is so interesting?
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The Poincaré lemma

Why H is so interesting?

H2 = 0 (9)

That gives (Hd+ dH = I − s∗x0
)

(Hd)2 = Hd, (dH)2 = dH. (10)

Geometric decomposition

We have projectors Hd and dH onto

Exact/closed vector space E(U) = im(dH) = ker(d),

Antiexact module A(U) = im(Hd) = ker(H),

Λ∗(U) = E(U)⊕A(U).

Is it useful?
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Why H is so interesting?

H2 = 0 (9)

That gives (Hd+ dH = I − s∗x0
)

(Hd)2 = Hd, (dH)2 = dH. (10)

Geometric decomposition

We have projectors Hd and dH onto

Exact/closed vector space E(U) = im(dH) = ker(d),

Antiexact module A(U) = im(Hd) = ker(H),

Λ∗(U) = E(U)⊕A(U).

Is it useful?



The Poincaré lemma
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The Poincaré lemma

Solve (on starshaped U):

dα = J (11)

Conclusion: dJ = 0, i.e., J ∈ E(U), i.e., J = dHJ ,

d(α−HJ) = 0, i.e., α−HJ ∈ E(U),

α = c+HJ , where c ∈ E(U) = ker(d).

Replacing:
d←→ d

dx ,∫
←→ H,

(12)

we have matching with a simple ODE dx(t)
dt = f(t) and its solution

x = C +
∫
f .
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The Poincaré lemma

dα = J (13)

What if dJ ̸= 0?
Then

J = Je + Ja ∈ E ⊕ A, Ja = HdJ ̸= 0. (14)

so
dα− Je︸ ︷︷ ︸

E

− Ja︸︷︷︸
A

= 0, (15)

and therefore, Ja = 0 - a contradiction!
We must add additional (antiexact) term. There is plenty of
options, however, one is

dα+A ∧ α = Je + Ja, (16)

for some A ∈ Λ1(U). (’Cartan-like minimal coupling’) Situation
similar to non-autonomous ODEs - time dependence is related to
the interaction with other part of the system.
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trivialization of a vector bundle.
We are interested in V -valued differential forms: Λ(U, V ).
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Vector-valued differential forms

Sections of associated vector bundle are in 1:1 correspondence with
equivariant horizontal forms.



Covariant exterior derivative

d∇ := d+A ∧ , (17)

for A ∈ Λ1(U,End(V )) (usually with additional properties related
to underlying bundle).
Reminder:

Λ0
b(P, V )

Ψ
��

d∇ // Λ0
b(P, V )

Ψ
��

Γ(E)
∇

// Γ(E)

G→ P →M - a principal bundle

E = P ×G V - associated vector bundle

Λ0
b(P, V ) - basic forms
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(Homogenous) parallel transport equation

d∇ϕ = 0, ϕ ∈ Λk(U, V ), (18)

with the “intial/boundary” condition dHϕ = c ∈ E(U, V ).

Decompose
ϕ = ϕ1 + ϕ2,

where
A ∧ ϕ2 = 0,

dϕ1 +A ∧ ϕ1 = −dϕ2.

An element
ϕ2 ∈ E(U, V ) ∩ ker(A ∧ )

is a ’gauge mode’ - nonuniquness of the solution.
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(Homogenous) parallel transport equation

d∇ϕ = 0, ϕ ∈ Λk(U, V ) \ ker(A ∧ ), (19)

with the “intial/boundary” condition dHϕ = c ∈ E(U, V ).

Replace with:
dϕ+ λA ∧ ϕ = 0, λ ̸= 0. (20)

Substitute a formal power series:

ϕ = ϕ0 + λϕ1 + λ2ϕ2 + . . . , (21)

Compare the O(λk) terms:

O(1): dϕ0 = 0

O(λ1): dϕ1 +A ∧ ϕ0 = 0

O(λl): dϕl +A ∧ ϕl−1 = 0.
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(Homogenous) parallel transport equation

...and solve iteratively:

O(1): dϕ0 = 0, so ϕ0 = dα0 for arbitrary α0.
O(λ1): dϕ1 +A ∧ ϕ0 = 0, so d(A ∧ ϕ0) = 0,
i.e.,A∧ ϕ0 = dH(A∧ ϕ0), so d(ϕ1 +H(A∧ ϕ0)) = 0, and the
solution is

ϕ1 = dα1 −H(A ∧ ϕ0), (22)

for α1 ∈ Λk−1(U, V ).
...
O(λl): ϕl = dαl −H(A ∧ ϕl−1).

Solution

We have a power series solution:

ϕ =

∞∑
l=0

(−1)l(H(A ∧ ))lc, (23)

where c =
∑

l dαl ∈ Λk−1(U, V ) is an arbitrary form, and
(H(A ∧ ))0 = Id.
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where c =
∑

l dαl ∈ Λk−1(U, V ) is an arbitrary form, and
(H(A ∧ ))0 = Id.



Exact-inhomogenous parallel transport equation

The unique solution of
d∇ϕ = J, (24)

for ϕ ∈ Λk(U, V ) \ ker(A ∧ ), A ∈ Λ1(U,End(V )),
J ∈ Ek+1(U, V ), with dHϕ = c ∈ E(U, V ) is

ϕ = ϕH + ϕI , ϕI =

∞∑
l=0

(−1)l(H(A ∧ ))lHJ, (25)

where ϕH is a solution of homogenous equation (J = 0).
The series in (25) is convergent for ||x− x0|| < k

||A||∞ , where the
supremum norm is taken over the line
L = {x0 + t(x− x0)|t ∈ [0; 1]}.



Inhomogenous parallel transport equation

The solution of the inhomogeneous covariant constancy equation

d∇ϕ = J, d∇ = d+A ∧ , (26)

where ϕ ∈ Λk(U, V ), A ∈ Λ1(U, V ), J ∈ Λk+1(U, V ) is given by

ϕ = ϕ1 + ϕ2 + ϕ3, (27)

where ϕ1 fulfils
d∇ϕ1 = Je − d(ϕ2 + ϕ3), (28)

and ϕ2 fulfils (constraint)

A ∧ ϕ2 = Ja, (29)

where Je := dHJ is the exact part of J , and Ja := HdJ is the
antiexact part of J . The ϕ3 ∈ ker(A ∧ ) is an arbitrary form.
Moreover A ∧ ϕ1 ∈ Ek+1(U, V ) and A ∧ ϕ2 ∈ Ak+1(U, V ).



Associated vector bundles

Is solution a base form on associated vector bundle?

Equivariance of solutions: Results from the uniqueness of the
solution (of parallel transport PDE).

Horizontality: Not always! Not every solution corresponds to
section of associated vector bundle - we get no miracles!
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Relation to Cartan structure equations

The torsion equation:

dωµ + ωµ
ν ∧ ων = Tµ, (30)

where ωµ
ν is fixed - second structure equation. It is solved by above

methods.
The second structure equation can also be solved by homotopy
operator, see our draft.
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Other applications

Plenty of equations of mathematical physics on Riemannian
manifolds, e.g., Maxwell equations:

DF = J, (31)

where the Dirac(-Kähler) operator is

D = d− δ. (32)



Other applications

For Riemannian manifolds, Hodge star duals to parallel transport
equation:

δϕ+ iA♯ϕ = J. (33)

Use iA♯ ⋆ ϕ = ⋆(ϕ ∧A).
There is linear (co)homotopy operator for codifferential

h = η ⋆−1 H⋆, (34)

where ηω = (−)|ω|ω.
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Other applications

Curvature (algebraic) equation treated as a differential equation:

F ∧ ϕ = d∇d∇ϕ = J. (35)

Replace second (covariant) order EDE to the system of first order
EDEs {

d∇ϕ2 = J
d∇ϕ1 = ϕ2.

(36)
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Other applications

More generally, having,

Di = d+Ai ∧ ,

D

i = δ + iA♯ (37)

we can construct geometr-based differential equation

Di1
1

Di2
2 . . . ϕ = J. (38)

Again, replace equation with system of equations and apply
previous ideas. Example:

dδϕ = J, (39)

is replaced by {
dϕ2 = J
δϕ1 = ϕ2,

(40)

which can be easily solved.
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Other applications

Variational calculus:

It is known that vertical derivative of jet bundle has a vertical
homotopy operator - Vainberg-Tonti Lagrangian.

It was however not known that the obstacle to variationality
of a differential equation(’as it stands’) is associated with
antiexact vertical form.

This is associated to non-symmetric part of Euler-Lagrange
differential operator.
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Other applications

Feynman graphs:

Using integration by parts, we can express any Feynman
integral I as a linear combination of master integrals
I⃗ = {I1, . . . , In}.
The master integrals fulfil the equation

(d+A)I⃗ = 0, A ∈ Λ1(RN ,Rn×n), (41)

where N - number of kinematic variables. A is a flat
connection, i.e., dA+A ∧A = 0.

For more see: Stefan Weinzierl, Feynman Integrals. A
Comprehensive Treatment for Students and Researchers,
Springer 2022
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Summary

The Poincare lemma and resulting homotopy operators have
nice ’operator’ properties.

On a star-shaped subset of a fibered set we can solve
“geometry-based differential equation” using homotopy
operator in the same way as integral is used for ODE.

(Almost) any such local problem can be easily solved using
our approach.

“Sheafication” is still missing to go from local to global view.
Then the topology of underlying space starts to play a role.

What is not yet done: Einstein equations, Green’s function for
Laplace-Beltrami operator.
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Link with operator calculus



Link with operator calculus

Mimic

d

dx

∫ x

x0

f(t)dt = f(x),

∫ x

x0

df

dt
(t)dt = f(x)− f(x0), (42)

for f ∈ C∞(R).

Bittner’s operator calculus

For linear spaces L0 and L1 we define linear operators

S : L0 → L1 - abstract derivative;

Tq : L1 → L0 - abstract integral parametrized by
q ∈ ker(S) ⊂ L0;

s : L0 → ker(S) ⊂ L0 - projection/limit condition;

that fulfills
ST = I, TS = I − s. (43)

Elements of ker(S) are called constants (of S).
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Link with operator calculus

Define L0 = E ⊕ A and L1 = E .

0

L1 := E

d

OO

H

""
L0 := E

d ��

⊕ A
d

bb

H��
0

We have:

S := d : L0 → L1 - derivative with ker(S) = ker(d) = E .

T := H : L1 → A ⊂ L0 - integral.

Obviously, ST |L1 = dH|E = I since dH is the projection operator
onto E .
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Link with operator calculus

In order to identify s operator, we use homotopy invariance
formula as

Hd = I − (s∗x0
+ dH)︸ ︷︷ ︸
s

, (44)

i.e.

s :=

{
s∗x0

for Λ0(U)
dH for Λk(U), k > 0.

(45)

Obviously, s defined above is a projection operator (s2 = s) onto
ker(S) = ker(d) = E .
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Chen’s iterated integrals (1977)

For a (super)vector bundle π : V →M , the connection
one-form ω ∈ Λ1(M,End(V )), construct Path Space.
Parallel transport operator Φ(t) : Vγ(t=0) → Vγ(t), for a path
γ : [0; 1]→M fulfils:

dΦω(t)

dt
= i∗t∂t⌟ω ∧ Φω(t), Φω(0) = IdV , (46)

where it : M →M × [0, 1] is the inclusion it(x) = (x, t),
ω ∈ Λ∗(M × [0, 1], End(V )).
Then the solution is the operator series

Φω(t) =

∞∑
n=0

Φω
n(t), Φω(0) = IdV , (47)

where (t ≥ s1 ≥ . . . ≥ sn ≥ 0):

Φω
0 (t) = Id,

Φω
1 (t) =

∫ t
0 i

∗
s1∂s1⌟ωds1

Φω
n≥2(t) =

∫ t
0

∫ s1
0 . . .

∫ sn−1

0 i∗s1∂s1⌟ω ∧ . . . ∧ i∗sn∂sn⌟ω dsn . . . ds1.

(48)
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