YANG MODEL REVISITED

Salvatore Mignemi

Dipartimento di Matematica Università di Cagliari Italy

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

SUMMARY

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Noncommutative geometry in curved spacetime
- Snyder model
- Yang model
- Yang-Poisson model and its realizations
- Hopf algebra of the Yang model
- Applications

Quantum gravity and noncommutative geometry

- At present, no complete theory of quantum gravity is available
- However, it is known that the predictions of quantum mechanics and general relativity imply the existence of a minimal measurable length of the scale of Planck length $L_P = \sqrt{\frac{\hbar G}{c^3}} = 10^{-33}$ cm
- Therefore, the properties of spacetime at this scale must be rather different from the usual ones.
- Among the proposals for a model of spacetime at these scales, noncommutative geometry has a relevant role.
- Noncommutative geometry is based on the assumption that the components of the position operator do not commute, leading to the impossibility of localizing a particle exactly

• Among various approaches to this field. an important role is played by Hopf algebra formalism

Noncommutative geometry in curved spacetime

- Noncommutative geometry is usually defined on flat spacetime
- Noncommutative geometry in curved spacetime has earned some interest recently because of possible implications for astrophysical observations, like the possible time delay of photons from distant sources
- However, also its formal aspects are noticeable, in particular the relations between curvature of spacetime and of momentum space
- Moreover, these models relate spacetime at microscopic and macroscopic scales
- \bullet A model of this kind was proposed by C.N. Yang already in 1947 (Yang, PRD 1947)
- We review this framework and discuss some recent progress and generalizations

The Snyder algebra

- In 1947 Snyder proposed the first model of noncommutative geometry. (Snyder, PRD 1947)
- His aim was to define a theory that included a fundamental length without breaking the Lorentz invariance

• This was realized by deforming the commutation relations of the Heisenberg algebra

• The model was defined through an algebra that besides the deformed Heisenbeg algebra, generated by positions \hat{x}_{μ} and momenta \hat{p}_{μ} , contained the Lorentz algebra with generators $J_{\mu\nu}$

$$[\hat{x}_{\mu}, \hat{x}_{\nu}] = i\beta J_{\mu\nu}, \quad [\hat{p}_{\mu}, \hat{p}_{\nu}] = 0, \quad [\hat{x}_{\mu}, \hat{p}_{\mu}] = i(\eta_{\mu\nu} + \beta \hat{p}_{\mu} \hat{p}_{\nu}),$$

 $[J_{\mu\nu}, J_{\rho\sigma}] = i \big(\eta_{\mu\rho} J_{\nu\sigma} - \eta_{\mu\sigma} J_{\nu\rho} + \eta_{\nu\rho} J_{\mu\sigma} - \eta_{\nu\sigma} J_{\mu\rho} \big),$

 $[J_{\mu\nu}, \hat{p}_{\lambda}] = i \left(\eta_{\mu\lambda} \hat{p}_{\nu} - \eta_{\lambda\nu} \hat{p}_{\mu} \right), \quad [J_{\mu\nu}, \hat{x}_{\lambda}] = i \left(\eta_{\mu\lambda} \hat{x}_{\nu} - \eta_{\nu\lambda} \hat{x}_{\mu} \right)$

 \bullet In particular, the \hat{x}_{μ} components do not commute among themselves

• The coupling constant β has dimension of inverse mass square and may be identified with $1/M_{Planck}^2$

• In contrast with the most common models of noncommutative geometry, the commutators are functions of the phase space variables: this allows them to be compatible with a linear action of the Lorentz symmetry, so that the Poincaré algebra is not deformed. However, translations (generated by the p_{μ}) act in a nontrivial way on position variables

• The Snyder model can be interpreted as describing flat spacetime with a curved momentum space

• In fact, the subalgebra generated by $J_{\mu\nu}$ and \hat{x}_{μ} is isomorphic to the de Sitter algebra so(1, 4), and the Snyder momentum space has the same geometry as de Sitter spacetime

The Yang algebra

• Soon after Snyder, Yang proposed a generalization of the model where also the momentum variables do not commute, like in de Sitter spacetime (Yang, PRD 1947)

• The algebra has the form of a so(1,5) algebra, with 15 generators

$$\begin{split} [\hat{x}_{\mu}, \hat{x}_{\nu}] &= i\beta J_{\mu\nu}, \quad [\hat{p}_{\mu}, \hat{p}_{\nu}] = i\alpha J_{\mu\nu}, \quad [\hat{x}_{\mu}, \hat{p}_{\nu}] = i\eta_{\mu\nu}h, \\ [J_{\mu\nu}, J_{\rho\sigma}] &= i(\eta_{\mu\rho}J_{\nu\sigma} - \eta_{\mu\sigma}J_{\nu\rho} + \eta_{\nu\rho}J_{\mu\sigma} - \eta_{\nu\sigma}J_{\mu\rho}), \\ [J_{\mu\nu}, \hat{p}_{\lambda}] &= i(\eta_{\mu\lambda}\hat{p}_{\nu} - \eta_{\lambda\nu}\hat{p}_{\mu}), \quad [J_{\mu\nu}, \hat{x}_{\lambda}] = i(\eta_{\mu\lambda}\hat{x}_{\nu} - \eta_{\nu\lambda}\hat{x}_{\mu}) \\ [h, \hat{x}_{\mu}] &= i\beta\hat{p}_{\mu}, \quad [h, \hat{p}_{\mu}] = -i\alpha\hat{x}_{\mu}, \quad [J_{\mu\nu}, h] = 0 \end{split}$$

• α has dimension of inverse length square and may be identified with the cosmological constant, while β is the same as in the Snyder model

• The Yang algebra contains as subalgebras both the de Sitter and the Snyder algebras, and therefore describes a noncommutative model in a spacetime of constant curvature

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• In order to close the algebra, Yang had to introduce a new generator h which rotates positions into momenta, but whose physical interpretation is not evident

• The previous algebra is invariant under a generalized Born duality (Born, RMP 1949)

$$\alpha \leftrightarrow \beta, \quad \hat{x}_{\mu} \rightarrow -\hat{p}_{\mu}, \quad \hat{p}_{\mu} \rightarrow \hat{x}_{\mu}, \quad J_{\mu\nu} \leftrightarrow J_{\mu\nu}, \quad h \leftrightarrow h$$

• The isomorphism with the so(1,5) algebra can be obtained by identifying

 $M_{\mu\nu} = J_{\mu\nu},$ $M_{\mu4} = \hat{x}_{\mu},$ $M_{\mu5} = \hat{p}_{\mu},$ $M_{45} = h$ where M_{AB} (A, B = 0, ..., 5) are the generators of so(1, 5)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Triply special relativity

• There exists a different generalization of the Snyder algebra on curved space, known as triply special relativity that does not include h, but is nonlinear. (Kowalski, Smolin, PRD 2004)

• In particular, in that case the deformed Heisenberg subalgebra takes the form

$$[\hat{x}_{\mu}, \hat{x}_{
u}] = ieta J_{\mu
u}, \quad [\hat{p}_{\mu}, \hat{p}_{
u}] = ilpha J_{\mu
u}$$

 $[\hat{x}_{\mu}, \hat{p}_{\nu}] = i(\eta_{\mu\nu} + \alpha \hat{x}_{\mu} \hat{x}_{\nu} + \beta \hat{p}_{\mu} \hat{p}_{\nu} + \sqrt{\alpha\beta} (\hat{x}_{\mu} \hat{p}_{\nu} + \hat{p}_{\mu} \hat{x}_{\nu} - J_{\mu\nu}))$

• In this case, one can interpreted the phase space as a coset space

 $\frac{so(1,5)}{so(1,3)\times so(2)}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Two interpretations of the Yang algebra are possible:

• Take the model as it is, with its 15 generators. This allows one to construct the Hopf algebra structure, with the related star product, etc.

 \circ However, in this case one has to consider an extended phase space and the interpretation of the new degrees of freedom is not obvious

• Take a nonlinear realization on canonical phase space spanned by x_{μ} and p_{μ} , with $J_{\mu\nu} = x_{\mu}p_{\nu} - x_{\nu}p_{\nu}$ and h = h(x, p)

• In this case the interpretation is easier and one can include the Yang model in the same family of nonlinear realizations as TSR, identifying the phase space with a coset space.

 \circ However, one can no longer define star products etc.

Yang-Poisson model

• We start following the second route, and discuss the classical limit of the Yang model, in which commutators are replaced by Poisson brackets

- This is much easier because of the absence of ordering problems
- We have (Meljanac, SM, IJMPA 2023)

$$\{\hat{x}_{\mu}, \hat{x}_{\nu}\} = \beta J_{\mu\nu}, \quad \{\hat{p}_{\mu}, \hat{p}_{\nu}\} = \alpha J_{\mu\nu}, \quad \{\hat{x}_{\mu}, \hat{p}_{\nu}\} = \eta_{\mu\nu}h,$$

$$\{h, \hat{x}_{\mu}\} = \beta \hat{p}_{\mu}, \quad \{h, \hat{p}_{\mu}\} = -\alpha \hat{x}_{\mu}$$

- We look for an expression of h(x, p) that satisfies the previous Poisson brackets
- We make the ansatz

$$\hat{x}_{\mu} = f(p^2, z) x_{\mu}, \qquad \hat{p}_{\mu} = g(x^2, z) p_{\mu}$$

 $h = h(x^2, p^2, z)$

where $z = x \cdot p$ and f and g are functions to be determined.

Realization of the Yang-Poisson model

• The only nontrivial brackets to be checked are those of the deformed Heisenberg algebra, which give rise to partial differential equations. The x-x and p-p brackets have solutions

$$f = \sqrt{1 - \beta p^2 + \phi_1(z)}, \qquad g = \sqrt{1 - \alpha x^2 + \phi_2(z)}$$

with arbitrary functions ϕ_1 an ϕ_2 , while the x-p brackets give

$$\phi_1\phi_2+\phi_1+\phi_2=\alpha\beta z^2,\qquad \textbf{h}=\textbf{fg}$$

with solution depending on one parameter c

$$\phi_1(z) = rac{\sqrt{1+4c(1-c)z^2}-1}{2(1-c)}, \quad \phi_2(z) = rac{\sqrt{1+4c(1-c)z^2}-1}{2c}$$

Then,

$$\hat{x}_{\mu} = \sqrt{1 - eta p^2 + \phi_1(z)} \; x_{\mu}, \quad \hat{p}_{\mu} = \sqrt{1 - lpha x^2 + \phi_2(z)} \; p_{\mu}$$

and

$$h = \sqrt{\left[1 - \beta p^2 + \phi_1(z)\right] \left[1 - \alpha x^2 + \phi_2(z)\right]}$$

• In terms of the original variables,

$$h = \sqrt{1 - \alpha \hat{x}^2 - \beta \hat{p}^2 - \alpha \beta \frac{J^2}{2}}$$

• A particularly interesting solution is obtained by assuming symmetry under the exchange of x and p, as is natural in view of the Born duality of the model. In this case, $\phi_1 = \phi_2 = \phi$, i.e. $c = \frac{1}{2}$, and we obtain

$$\phi = \sqrt{1 + \alpha\beta z^2} - 1$$

and then

$$\hat{x}_{\mu}=\sqrt{\sqrt{1+lphaeta z^2}-eta p^2}\;x_{\mu}, \quad \hat{p}_{\mu}=\sqrt{\sqrt{1+lphaeta z^2}-lpha x^2}\;p_{\mu}$$

This gives an exact realization of the Yang model, symmetric for $x \leftrightarrow p$ and $\alpha \leftrightarrow \beta$.

Realizations of the quantum Yang model

• In the quantum case, finding a realization is more difficult, and can only be achieved by a perturbative calculation in the coupling parameters α and β The simplest case is (Meljanac et al., JMP 2023)

$$\hat{x}_{\mu} = x_{\mu} - \frac{\beta^2}{4} x_{\mu} p^2 - \frac{\beta^4}{16} x_{\mu} p^4 + \frac{\alpha^2 \beta^2}{8} x_{\mu} x \cdot p \ p \cdot x + \text{h.c.}$$
$$\hat{p}_{\mu} = p_{\mu} - \frac{\alpha^2}{4} p_{\mu} x^2 - \frac{\alpha^4}{16} p_{\mu} x^4 + \frac{\alpha^2 \beta^2}{8} p_{\mu} p \cdot x \ x \cdot p + \text{h.c.}$$

with

$$h = 1 - \frac{1}{2} \left(\alpha^2 x^2 + \beta^2 p^2 \right) - \frac{1}{8} \left(\alpha^2 x^2 - \beta^2 p^2 \right)^2 + \frac{\alpha^2 \beta^2}{2} x \cdot p \ p \cdot x$$

• However, at leading order in \hbar , one gets the classical result

Star product for the Yang algebra

• The most useful framework for noncommutative geometry is that of Hopf algebras

• It is possible to apply this formalism also to the Yang model, provided one takes all its generators M_{AB} as primary variables.

• We shall not go into details. We only recall that due to noncommutativity, the addition law of momenta is deformed.

• The deformation can be expressed by means of a star product. In our case, for plane waves, one has

$$\mathrm{e}^{rac{i}{2}s^{AB}M_{AB}}\star\mathrm{e}^{rac{i}{2}t^{CD}M_{CD}}=\mathrm{e}^{rac{i}{2}\mathcal{D}^{AB}(s,t)M_{AB}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where s_{AB} and t_{AB} are antisymmetric tensors that describe the "momenta" conjugated to the primary variables M_{AB} and \mathcal{D}^{AB} encodes the deformed addition law

• It may be useful to explicitly write down the four-dimensional expression of $\mathcal{D}^{AB}(s, t)$: setting $\mathcal{D}^{\mu} = \mathcal{D}^{\mu 4}$, $\overline{\mathcal{D}}^{\mu} = \mathcal{D}^{\mu 5}$, $\mathcal{D} = \mathcal{D}^{45}$, one has

$$\begin{split} \mathcal{D}^{\mu\nu}(s,t) &= s^{\mu\nu} + t^{\mu\nu} - \frac{1}{2} \Big(s^{\mu\lambda} t^{\nu}{}_{\lambda} + \beta s^{\mu} t^{\nu} + \alpha \bar{s}^{\mu} \bar{t}^{\nu} + \gamma (s^{\mu} \bar{t}^{\nu} + \bar{s}^{\mu} t^{\nu}) \\ &- (\mu \leftrightarrow \nu) \Big) \\ \mathcal{D}^{\mu}(s,t) &= s^{\mu} + t^{\mu} - \frac{1}{2} (s^{\mu\lambda} t_{\lambda} - t^{\mu\lambda} s_{\lambda} + \gamma (s^{\mu} t - s t^{\mu}) + \alpha (\bar{s}^{\mu} t - s \bar{t}^{\mu})) \\ \bar{\mathcal{D}}^{\mu}(s,t) &= \bar{s}^{\mu} + \bar{t}^{\mu} - \frac{1}{2} (s^{\mu\lambda} \bar{t}_{\lambda} - \bar{s}_{\lambda} t^{\mu\lambda} - \gamma (\bar{s}^{\mu} t - s \bar{t}^{\mu}) + \beta (s^{\mu} t - s t^{\mu})) \\ \mathcal{D}(s,t) &= s + t - \frac{1}{2} (s^{\lambda} \bar{t}_{\lambda} - \bar{s}^{\lambda} t_{\lambda}) \end{split}$$

where $\gamma = \sqrt{\alpha\beta}$ and $s^{\mu\nu}$, $s^{\mu} = s^{\mu4}$, $\bar{s}^{\mu} = s^{\mu5}$, $s = s^{45}$ are the 4D components of s^{AB} , conjugated to $J_{\mu\nu}$, x_{μ} , p_{μ} and h, resp. • Clearly, the physical interpretation of these "momenta" is not obvious

Generalizations

• It is possible to generalize the Yang algebra by including κ -deformations of both position and momentum space with parameters a_{μ} and b_{μ} (Lukierski et al, arxiv 2023)

$$\begin{aligned} [x_{\mu}, x_{\nu}] &= i \left(\beta J_{\mu\nu} + a_{\mu}x_{\nu} - a_{\nu}x_{\mu}\right), \\ [p_{\mu}, p_{\nu}] &= i \left(\alpha J_{\mu\nu} + b_{\mu}p_{\nu} - b_{\mu}p_{\nu}\right), \\ [x_{\mu}, p_{\nu}] &= i \left(\eta_{\mu\nu}h + b_{\mu}x_{\nu} - a_{\nu}p_{\mu} + \gamma J_{\mu\nu}\right), \\ [J_{\mu\nu}, x_{\lambda}] &= i \left(\eta_{\mu\lambda}x_{\nu} - \eta_{\nu\lambda}x_{\mu} + a_{\mu}J_{\lambda\nu} - a_{\nu}J_{\lambda\mu}\right), \\ [J_{\mu\nu}, p_{\lambda}] &= i \left(\eta_{\mu\lambda}p_{\nu} - \eta_{\nu\lambda}p_{\mu} + b_{\mu}J_{\lambda\nu} - b_{\nu}J_{\lambda\mu}\right), \\ [J_{\mu\nu}, h] &= i \left(b_{\nu}x_{\mu} - b_{\mu}x_{\nu} - a_{\nu}p_{\mu} + a_{\mu}p_{\nu}\right), \\ [h, x_{\mu}] &= i \left(\beta p_{\mu} - \gamma x_{\mu} - a_{\mu}h\right), \\ [h, p_{\nu}] &= i \left(-\alpha x_{\mu} + \gamma p_{\mu} + b_{\mu}h\right) \end{aligned}$$

• This algebra is still isomorphic to so(1,5), but now the action of the Lorentz invariance is deformed

Applications

• A physical consequence of Yang model is a deformation of the Heisenberg uncertainty relations. In fact, in 3D

$$\Delta x_i \Delta p_j \geq rac{1}{2} ig| \langle [x_i, p_j]
angle ig| = rac{1}{2} ig| \langle h(x, p)
angle ig| \delta_{ij}$$

• One can also calculate corrections to the dynamics of simple models due to the nontrivial symplectic structure, with possible applications to astrophysical observations

- Finally, a more ambitious goal would be to build a quantum field theory based on this framework
- Some of these applications require the use of an extended phase space. In this case the physical interpretation of the additional coordinates needs to be clarified