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Quantum gravity and noncommutative geometry

• At present, no complete theory of quantum gravity is available
• However, it is known that the predictions of quantum mechanics
and general relativity imply the existence of a minimal measurable

length of the scale of Planck length LP =
√

ℏG
c3

= 10−33 cm

• Therefore, the properties of spacetime at this scale must be
rather different from the usual ones.
• Among the proposals for a model of spacetime at these scales,
noncommutative geometry has a relevant role.
• Noncommutative geometry is based on the assumption that the
components of the position operator do not commute, leading to
the impossibility of localizing a particle exactly
• Among various approaches to this field. an important role is
played by Hopf algebra formalism



Noncommutative geometry in curved spacetime

• Noncommutative geometry is usually defined on flat spacetime
• Noncommutative geometry in curved spacetime has earned some
interest recently because of possible implications for astrophysical
observations, like the possible time delay of photons from distant
sources
• However, also its formal aspects are noticeable, in particular the
relations between curvature of spacetime and of momentum space
• Moreover, these models relate spacetime at microscopic and
macroscopic scales
• A model of this kind was proposed by C.N. Yang already in 1947
(Yang, PRD 1947)

• We review this framework and discuss some recent progress and
generalizations



The Snyder algebra

• In 1947 Snyder proposed the first model of noncommutative
geometry. (Snyder, PRD 1947)

• His aim was to define a theory that included a fundamental
length without breaking the Lorentz invariance
• This was realized by deforming the commutation relations of the
Heisenberg algebra
• The model was defined through an algebra that besides the
deformed Heisenbeg algebra, generated by positions x̂µ and
momenta p̂µ, contained the Lorentz algebra with generators Jµν

[x̂µ, x̂ν ] = iβJµν , [p̂µ, p̂ν ] = 0, [x̂µ, p̂µ] = i(ηµν + βp̂µp̂ν),

[Jµν , Jρσ] = i
(
ηµρJνσ − ηµσJνρ + ηνρJµσ − ηνσJµρ

)
,

[Jµν , p̂λ] = i (ηµλp̂ν − ηλν p̂µ) , [Jµν , x̂λ] = i (ηµλx̂ν − ηνλx̂µ)

• In particular, the x̂µ components do not commute among
themselves



• The coupling constant β has dimension of inverse mass square
and may be identified with 1/M2

Planck

• In contrast with the most common models of noncommutative
geometry, the commutators are functions of the phase space
variables: this allows them to be compatible with a linear action of
the Lorentz symmetry, so that the Poincaré algebra is not
deformed. However, translations (generated by the pµ) act in a
nontrivial way on position variables
• The Snyder model can be interpreted as describing flat
spacetime with a curved momentum space
• In fact, the subalgebra generated by Jµν and x̂µ is isomorphic to
the de Sitter algebra so(1, 4), and the Snyder momentum space
has the same geometry as de Sitter spacetime



The Yang algebra

• Soon after Snyder, Yang proposed a generalization of the model
where also the momentum variables do not commute, like in de
Sitter spacetime (Yang, PRD 1947)

• The algebra has the form of a so(1, 5) algebra, with 15 generators

[x̂µ, x̂ν ] = iβJµν , [p̂µ, p̂ν ] = iαJµν , [x̂µ, p̂ν ] = iηµνh,

[Jµν , Jρσ] = i
(
ηµρJνσ − ηµσJνρ + ηνρJµσ − ηνσJµρ

)
,

[Jµν , p̂λ] = i (ηµλp̂ν − ηλν p̂µ) , [Jµν , x̂λ] = i (ηµλx̂ν − ηνλx̂µ)

[h, x̂µ] = iβp̂µ, [h, p̂µ] = −iαx̂µ, [Jµν , h] = 0

• α has dimension of inverse length square and may be identified
with the cosmological constant, while β is the same as in the
Snyder model
• The Yang algebra contains as subalgebras both the de Sitter and
the Snyder algebras, and therefore describes a noncommutative
model in a spacetime of constant curvature



• In order to close the algebra, Yang had to introduce a new
generator h which rotates positions into momenta, but whose
physical interpretation is not evident
• The previous algebra is invariant under a generalized Born duality
(Born, RMP 1949)

α ↔ β, x̂µ → −p̂µ, p̂µ → x̂µ, Jµν ↔ Jµν , h ↔ h

• The isomorphism with the so(1, 5) algebra can be obtained by
identifying

Mµν = Jµν , Mµ4 = x̂µ, Mµ5 = p̂µ, M45 = h

where MAB (A,B = 0, . . . , 5) are the generators of so(1, 5)



Triply special relativity

• There exists a different generalization of the Snyder algebra on
curved space, known as triply special relativity that does not
include h, but is nonlinear. (Kowalski, Smolin, PRD 2004)

• In particular, in that case the deformed Heisenberg subalgebra
takes the form

[x̂µ, x̂ν ] = iβJµν , [p̂µ, p̂ν ] = iαJµν

[x̂µ, p̂ν ] = i(ηµν + αx̂µx̂ν + βp̂µp̂ν +
√
αβ(x̂µp̂ν + p̂µx̂ν − Jµν))

• In this case, one can interpreted the phase space as a coset space

so(1, 5)

so(1, 3)× so(2)



Two interpretations of the Yang algebra are possible:

• Take the model as it is, with its 15 generators. This allows one
to construct the Hopf algebra structure, with the related star
product, etc.

◦ However, in this case one has to consider an extended phase
space and the interpretation of the new degrees of freedom is not
obvious

• Take a nonlinear realization on canonical phase space spanned by
xµ and pµ, with Jµν = xµpν − xνpν and h = h(x , p)

◦ In this case the interpretation is easier and one can include the
Yang model in the same family of nonlinear realizations as TSR,
identifying the phase space with a coset space.

◦ However, one can no longer define star products etc.



Yang-Poisson model

• We start following the second route, and discuss the classical
limit of the Yang model, in which commutators are replaced by
Poisson brackets
• This is much easier because of the absence of ordering problems
• We have (Meljanac, SM, IJMPA 2023)

{x̂µ, x̂ν} = βJµν , {p̂µ, p̂ν} = αJµν , {x̂µ, p̂ν} = ηµνh,

{h, x̂µ} = βp̂µ, {h, p̂µ} = −αx̂µ

• We look for an expression of h(x , p) that satisfies the previous
Poisson brackets
• We make the ansatz

x̂µ = f (p2, z) xµ, p̂µ = g(x2, z) pµ

h = h(x2, p2, z)

where z = x ·p and f and g are functions to be determined.



Realization of the Yang-Poisson model

• The only nontrivial brackets to be checked are those of the
deformed Heisenberg algebra, which give rise to partial differential
equations. The x–x and p–p brackets have solutions

f =
√

1− βp2 + ϕ1(z), g =
√

1− αx2 + ϕ2(z)

with arbitrary functions ϕ1 an ϕ2, while the x–p brackets give

ϕ1ϕ2 + ϕ1 + ϕ2 = αβz2, h = fg

with solution depending on one parameter c

ϕ1(z) =

√
1 + 4c(1− c)z2 − 1

2(1− c)
, ϕ2(z) =

√
1 + 4c(1− c)z2 − 1

2c

Then,

x̂µ =
√

1− βp2 + ϕ1(z) xµ, p̂µ =
√
1− αx2 + ϕ2(z) pµ

and

h =
√

[1− βp2 + ϕ1(z)] [1− αx2 + ϕ2(z)]



• In terms of the original variables,

h =

√
1− αx̂2 − βp̂2 − αβ

J2

2

• A particularly interesting solution is obtained by assuming
symmetry under the exchange of x and p, as is natural in view of
the Born duality of the model. In this case, ϕ1 = ϕ2 = ϕ, i.e.
c = 1

2 , and we obtain

ϕ =
√

1 + αβz2 − 1

and then

x̂µ =

√√
1 + αβz2 − βp2 xµ, p̂µ =

√√
1 + αβz2 − αx2 pµ

This gives an exact realization of the Yang model, symmetric for
x ↔ p and α ↔ β.



Realizations of the quantum Yang model

• In the quantum case, finding a realization is more difficult, and
can only be achieved by a perturbative calculation in the coupling
parameters α and β The simplest case is (Meljanac et al., JMP 2023)

x̂µ = xµ − β2

4
xµp

2 − β4

16
xµp

4 +
α2β2

8
xµ x ·p p·x + h.c.

p̂µ = pµ − α2

4
pµx

2 − α4

16
pµx

4 +
α2β2

8
pµ p·x x ·p + h.c.

with

h = 1− 1

2

(
α2x2 + β2p2

)
− 1

8

(
α2x2 − β2p2

)2
+

α2β2

2
x ·p p·x

• However, at leading order in ℏ, one gets the classical result



Star product for the Yang algebra

• The most useful framework for noncommutative geometry is that
of Hopf algebras
• It is possible to apply this formalism also to the Yang model,
provided one takes all its generators MAB as primary variables.
• We shall not go into details. We only recall that due to
noncommutativity, the addition law of momenta is deformed.
• The deformation can be expressed by means of a star product.
In our case, for plane waves, one has

e
i
2
sABMAB ⋆ e

i
2
tCDMCD = e

i
2
DAB(s,t)MAB

where sAB and tAB are antisymmetric tensors that describe the
”momenta” conjugated to the primary variables MAB and DAB

encodes the deformed addition law



• It may be useful to explicitly write down the four-dimensional
expression of DAB(s, t):
setting Dµ = Dµ4, D̄µ = Dµ5, D = D45, one has

Dµν(s, t) = sµν + tµν − 1

2

(
sµλtνλ + βsµtν + αs̄µt̄ν + γ(sµt̄ν + s̄µtν)

− (µ ↔ ν)
)

Dµ(s, t) = sµ + tµ − 1

2
(sµλtλ − tµλsλ + γ(sµt − stµ) + α(s̄µt − st̄µ))

D̄µ(s, t) = s̄µ + t̄µ − 1

2
(sµλt̄λ − s̄λt

µλ − γ(s̄µt − st̄µ) + β(sµt − stµ))

D(s, t) = s + t − 1

2
(sλt̄λ − s̄λtλ)

where γ =
√
αβ and sµν , sµ = sµ4, s̄µ = sµ5, s = s45 are the 4D

components of sAB , conjugated to Jµν , xµ, pµ and h, resp.
• Clearly, the physical interpretation of these ”momenta” is not
obvious



Generalizations

• It is possible to generalize the Yang algebra by including
κ-deformations of both position and momentum space with
parameters aµ and bµ (Lukierski et al, arxiv 2023)

[xµ, xν ] = i (βJµν + aµxν − aνxµ) ,
[pµ, pν ] = i (αJµν + bµpν − bµpν) ,
[xµ, pν ] = i (ηµνh + bµxν − aνpµ + γJµν) ,
[Jµν , xλ] = i (ηµλxν − ηνλxµ + aµJλν − aνJλµ) ,
[Jµν , pλ] = i (ηµλpν − ηνλpµ + bµJλν − bνJλµ) ,
[Jµν , h] = i (bνxµ − bµxν − aνpµ + aµpν) ,
[h, xµ] = i (βpµ − γxµ − aµh) ,
[h, pν ] = i (−αxµ + γpµ + bµh)

• This algebra is still isomorphic to so(1, 5), but now the action of
the Lorentz invariance is deformed



Applications

• A physical consequence of Yang model is a deformation of the
Heisenberg uncertainty relations. In fact, in 3D

∆xi∆pj ≥
1

2

∣∣⟨[xi , pj ]⟩∣∣ = 1

2

∣∣⟨h(x , p)⟩∣∣δij
• One can also calculate corrections to the dynamics of simple
models due to the nontrivial symplectic structure, with possible
applications to astrophysical observations
• Finally, a more ambitious goal would be to build a quantum field
theory based on this framework
• Some of these applications require the use of an extended phase
space. In this case the physical interpretation of the additional
coordinates needs to be clarified


