YANG MODEL REVISITED

Salvatore Mignemi

Dipartimento di Matematica
Università di Cagliari
Italy

SUMMARY

- Noncommutative geometry in curved spacetime
- Snyder model
- Yang model
- Yang-Poisson model and its realizations
- Hopf algebra of the Yang model
- Applications

Quantum gravity and noncommutative geometry

- At present, no complete theory of quantum gravity is available
- However, it is known that the predictions of quantum mechanics and general relativity imply the existence of a minimal measurable length of the scale of Planck length $L_{P}=\sqrt{\frac{\hbar G}{c^{3}}}=10^{-33} \mathrm{~cm}$
- Therefore, the properties of spacetime at this scale must be rather different from the usual ones.
- Among the proposals for a model of spacetime at these scales, noncommutative geometry has a relevant role.
- Noncommutative geometry is based on the assumption that the components of the position operator do not commute, leading to the impossibility of localizing a particle exactly
- Among various approaches to this field. an important role is played by Hopf algebra formalism

Noncommutative geometry in curved spacetime

- Noncommutative geometry is usually defined on flat spacetime
- Noncommutative geometry in curved spacetime has earned some interest recently because of possible implications for astrophysical observations, like the possible time delay of photons from distant sources
- However, also its formal aspects are noticeable, in particular the relations between curvature of spacetime and of momentum space - Moreover, these models relate spacetime at microscopic and macroscopic scales
- A model of this kind was proposed by C.N. Yang already in 1947 (Yang, PRD 1947)
- We review this framework and discuss some recent progress and generalizations

The Snyder algebra

- In 1947 Snyder proposed the first model of noncommutative geometry. (Snyder, PRD 1947)
- His aim was to define a theory that included a fundamental length without breaking the Lorentz invariance
- This was realized by deforming the commutation relations of the Heisenberg algebra
- The model was defined through an algebra that besides the deformed Heisenbeg algebra, generated by positions \hat{x}_{μ} and momenta \hat{p}_{μ}, contained the Lorentz algebra with generators $J_{\mu \nu}$

$$
\begin{gathered}
{\left[\hat{x}_{\mu}, \hat{x}_{\nu}\right]=i \beta J_{\mu \nu}, \quad\left[\hat{p}_{\mu}, \hat{p}_{\nu}\right]=0, \quad\left[\hat{x}_{\mu}, \hat{p}_{\mu}\right]=i\left(\eta_{\mu \nu}+\beta \hat{p}_{\mu} \hat{p}_{\nu}\right),} \\
{\left[J_{\mu \nu}, J_{\rho \sigma}\right]=i\left(\eta_{\mu \rho} J_{\nu \sigma}-\eta_{\mu \sigma} J_{\nu \rho}+\eta_{\nu \rho} J_{\mu \sigma}-\eta_{\nu \sigma} J_{\mu \rho}\right)} \\
{\left[J_{\mu \nu}, \hat{p}_{\lambda}\right]=i\left(\eta_{\mu \lambda} \hat{p}_{\nu}-\eta_{\lambda \nu} \hat{p}_{\mu}\right), \quad\left[J_{\mu \nu}, \hat{x}_{\lambda}\right]=i\left(\eta_{\mu \lambda} \hat{x}_{\nu}-\eta_{\nu \lambda} \hat{x}_{\mu}\right)}
\end{gathered}
$$

- In particular, the \hat{x}_{μ} components do not commute among themselves
- The coupling constant β has dimension of inverse mass square and may be identified with $1 / M_{\text {Planck }}^{2}$
- In contrast with the most common models of noncommutative geometry, the commutators are functions of the phase space variables: this allows them to be compatible with a linear action of the Lorentz symmetry, so that the Poincaré algebra is not deformed. However, translations (generated by the p_{μ}) act in a nontrivial way on position variables
- The Snyder model can be interpreted as describing flat spacetime with a curved momentum space
- In fact, the subalgebra generated by $J_{\mu \nu}$ and \hat{x}_{μ} is isomorphic to the de Sitter algebra so $(1,4)$, and the Snyder momentum space has the same geometry as de Sitter spacetime

The Yang algebra

- Soon after Snyder, Yang proposed a generalization of the model where also the momentum variables do not commute, like in de Sitter spacetime (Yang, PRD 1947)
- The algebra has the form of a so $(1,5)$ algebra, with 15 generators

$$
\begin{gathered}
{\left[\hat{x}_{\mu}, \hat{x}_{\nu}\right]=i \beta J_{\mu \nu}, \quad\left[\hat{p}_{\mu}, \hat{p}_{\nu}\right]=i \alpha J_{\mu \nu}, \quad\left[\hat{x}_{\mu}, \hat{p}_{\nu}\right]=i \eta_{\mu \nu} h,} \\
{\left[J_{\mu \nu}, J_{\rho \sigma}\right]=i\left(\eta_{\mu \rho} J_{\nu \sigma}-\eta_{\mu \sigma} J_{\nu \rho}+\eta_{\nu \rho} J_{\mu \sigma}-\eta_{\nu \sigma} J_{\mu \rho}\right),} \\
{\left[J_{\mu \nu}, \hat{p}_{\lambda}\right]=i\left(\eta_{\mu \lambda} \hat{p}_{\nu}-\eta_{\lambda \nu} \hat{p}_{\mu}\right), \quad\left[J_{\mu \nu}, \hat{x}_{\lambda}\right]=i\left(\eta_{\mu \lambda} \hat{x}_{\nu}-\eta_{\nu \lambda} \hat{x}_{\mu}\right)} \\
{\left[h, \hat{x}_{\mu}\right]=i \beta \hat{p}_{\mu}, \quad\left[h, \hat{p}_{\mu}\right]=-i \alpha \hat{x}_{\mu}, \quad\left[J_{\mu \nu}, h\right]=0}
\end{gathered}
$$

- α has dimension of inverse length square and may be identified with the cosmological constant, while β is the same as in the Snyder model
- The Yang algebra contains as subalgebras both the de Sitter and the Snyder algebras, and therefore describes a noncommutative model in a spacetime of constant curvature
- In order to close the algebra, Yang had to introduce a new generator h which rotates positions into momenta, but whose physical interpretation is not evident
- The previous algebra is invariant under a generalized Born duality (Born, RMP 1949)

$$
\alpha \leftrightarrow \beta, \quad \hat{x}_{\mu} \rightarrow-\hat{p}_{\mu}, \quad \hat{p}_{\mu} \rightarrow \hat{x}_{\mu}, \quad J_{\mu \nu} \leftrightarrow J_{\mu \nu}, \quad h \leftrightarrow h
$$

- The isomorphism with the $s o(1,5)$ algebra can be obtained by identifying

$$
M_{\mu \nu}=J_{\mu \nu}, \quad M_{\mu 4}=\hat{x}_{\mu}, \quad M_{\mu 5}=\hat{p}_{\mu}, \quad M_{45}=h
$$

where $M_{A B}(A, B=0, \ldots, 5)$ are the generators of $s o(1,5)$

Triply special relativity

- There exists a different generalization of the Snyder algebra on curved space, known as triply special relativity that does not include h, but is nonlinear. (Kowalski, Smolin, PRD 2004)
- In particular, in that case the deformed Heisenberg subalgebra takes the form

$$
\begin{gathered}
{\left[\hat{x}_{\mu}, \hat{x}_{\nu}\right]=i \beta J_{\mu \nu}, \quad\left[\hat{p}_{\mu}, \hat{p}_{\nu}\right]=i \alpha J_{\mu \nu}} \\
{\left[\hat{x}_{\mu}, \hat{p}_{\nu}\right]=i\left(\eta_{\mu \nu}+\alpha \hat{x}_{\mu} \hat{x}_{\nu}+\beta \hat{p}_{\mu} \hat{p}_{\nu}+\sqrt{\alpha \beta}\left(\hat{x}_{\mu} \hat{p}_{\nu}+\hat{p}_{\mu} \hat{x}_{\nu}-J_{\mu \nu}\right)\right)}
\end{gathered}
$$

- In this case, one can interpreted the phase space as a coset space

$$
\frac{s o(1,5)}{s o(1,3) \times s o(2)}
$$

Two interpretations of the Yang algebra are possible:

- Take the model as it is, with its 15 generators. This allows one to construct the Hopf algebra structure, with the related star product, etc.
- However, in this case one has to consider an extended phase space and the interpretation of the new degrees of freedom is not obvious
- Take a nonlinear realization on canonical phase space spanned by x_{μ} and p_{μ}, with $J_{\mu \nu}=x_{\mu} p_{\nu}-x_{\nu} p_{\nu}$ and $h=h(x, p)$
- In this case the interpretation is easier and one can include the Yang model in the same family of nonlinear realizations as TSR, identifying the phase space with a coset space.
- However, one can no longer define star products etc.

Yang-Poisson model

- We start following the second route, and discuss the classical limit of the Yang model, in which commutators are replaced by Poisson brackets
- This is much easier because of the absence of ordering problems
- We have (Meljanac, SM, IJMPA 2023)

$$
\begin{gathered}
\left\{\hat{x}_{\mu}, \hat{x}_{\nu}\right\}=\beta J_{\mu \nu}, \quad\left\{\hat{p}_{\mu}, \hat{p}_{\nu}\right\}=\alpha J_{\mu \nu}, \quad\left\{\hat{x}_{\mu}, \hat{p}_{\nu}\right\}=\eta_{\mu \nu} h, \\
\left\{h, \hat{x}_{\mu}\right\}=\beta \hat{p}_{\mu}, \quad\left\{h, \hat{p}_{\mu}\right\}=-\alpha \hat{x}_{\mu}
\end{gathered}
$$

- We look for an expression of $h(x, p)$ that satisfies the previous Poisson brackets
- We make the ansatz

$$
\begin{gathered}
\hat{x}_{\mu}=f\left(p^{2}, z\right) x_{\mu}, \quad \hat{p}_{\mu}=g\left(x^{2}, z\right) p_{\mu} \\
h=h\left(x^{2}, p^{2}, z\right)
\end{gathered}
$$

where $z=x \cdot p$ and f and g are functions to be determined.

Realization of the Yang-Poisson model

- The only nontrivial brackets to be checked are those of the deformed Heisenberg algebra, which give rise to partial differential equations. The $x-x$ and $p-p$ brackets have solutions

$$
f=\sqrt{1-\beta p^{2}+\phi_{1}(z)}, \quad g=\sqrt{1-\alpha x^{2}+\phi_{2}(z)}
$$

with arbitrary functions ϕ_{1} an ϕ_{2}, while the $x-p$ brackets give

$$
\phi_{1} \phi_{2}+\phi_{1}+\phi_{2}=\alpha \beta z^{2}, \quad h=f g
$$

with solution depending on one parameter c

$$
\phi_{1}(z)=\frac{\sqrt{1+4 c(1-c) z^{2}}-1}{2(1-c)}, \quad \phi_{2}(z)=\frac{\sqrt{1+4 c(1-c) z^{2}}-1}{2 c}
$$

Then,

$$
\hat{x}_{\mu}=\sqrt{1-\beta p^{2}+\phi_{1}(z)} x_{\mu}, \quad \hat{p}_{\mu}=\sqrt{1-\alpha x^{2}+\phi_{2}(z)} p_{\mu}
$$

and

$$
h=\sqrt{\left[1-\beta p^{2}+\phi_{1}(z)\right]\left[1-\alpha x^{2}+\phi_{2}(z)\right]}
$$

- In terms of the original variables,

$$
h=\sqrt{1-\alpha \hat{x}^{2}-\beta \hat{p}^{2}-\alpha \beta \frac{J^{2}}{2}}
$$

- A particularly interesting solution is obtained by assuming symmetry under the exchange of x and p, as is natural in view of the Born duality of the model. In this case, $\phi_{1}=\phi_{2}=\phi$, i.e.
$c=\frac{1}{2}$, and we obtain

$$
\phi=\sqrt{1+\alpha \beta z^{2}}-1
$$

and then

$$
\hat{x}_{\mu}=\sqrt{\sqrt{1+\alpha \beta z^{2}}-\beta p^{2}} x_{\mu}, \quad \hat{p}_{\mu}=\sqrt{\sqrt{1+\alpha \beta z^{2}}-\alpha x^{2}} p_{\mu}
$$

This gives an exact realization of the Yang model, symmetric for $x \leftrightarrow p$ and $\alpha \leftrightarrow \beta$.

Realizations of the quantum Yang model

- In the quantum case, finding a realization is more difficult, and can only be achieved by a perturbative calculation in the coupling parameters α and β The simplest case is (Meljanac et al., JMP 2023)

$$
\begin{aligned}
& \hat{x}_{\mu}=x_{\mu}-\frac{\beta^{2}}{4} x_{\mu} p^{2}-\frac{\beta^{4}}{16} x_{\mu} p^{4}+\frac{\alpha^{2} \beta^{2}}{8} x_{\mu} x \cdot p p \cdot x+\text { h.c. } \\
& \hat{p}_{\mu}=p_{\mu}-\frac{\alpha^{2}}{4} p_{\mu} x^{2}-\frac{\alpha^{4}}{16} p_{\mu} x^{4}+\frac{\alpha^{2} \beta^{2}}{8} p_{\mu} p \cdot x x \cdot p+\text { h.c. }
\end{aligned}
$$

with

$$
h=1-\frac{1}{2}\left(\alpha^{2} x^{2}+\beta^{2} p^{2}\right)-\frac{1}{8}\left(\alpha^{2} x^{2}-\beta^{2} p^{2}\right)^{2}+\frac{\alpha^{2} \beta^{2}}{2} x \cdot p p \cdot x
$$

- However, at leading order in \hbar, one gets the classical result

Star product for the Yang algebra

- The most useful framework for noncommutative geometry is that of Hopf algebras
- It is possible to apply this formalism also to the Yang model, provided one takes all its generators $M_{A B}$ as primary variables.
- We shall not go into details. We only recall that due to noncommutativity, the addition law of momenta is deformed.
- The deformation can be expressed by means of a star product. In our case, for plane waves, one has

$$
e^{\frac{i}{2} s^{A B} M_{A B}} \star e^{\frac{i}{2} t^{C D} M_{C D}}=e^{\frac{i}{2} \mathcal{D}^{A B}(s, t) M_{A B}}
$$

where $s_{A B}$ and $t_{A B}$ are antisymmetric tensors that describe the "momenta" conjugated to the primary variables $M_{A B}$ and $\mathcal{D}^{A B}$ encodes the deformed addition law

- It may be useful to explicitly write down the four-dimensional expression of $\mathcal{D}^{A B}(s, t)$:
setting $\mathcal{D}^{\mu}=\mathcal{D}^{\mu 4}, \overline{\mathcal{D}}^{\mu}=\mathcal{D}^{\mu 5}, \mathcal{D}=\mathcal{D}^{45}$, one has

$$
\begin{aligned}
\mathcal{D}^{\mu \nu}(s, t) & =s^{\mu \nu}+t^{\mu \nu}-\frac{1}{2}\left(s^{\mu \lambda} t_{\lambda}^{\nu}+\beta s^{\mu} t^{\nu}+\alpha \bar{s}^{\mu} \bar{t}^{\nu}+\gamma\left(s^{\mu} \bar{t}^{\nu}+\bar{s}^{\mu} t^{\nu}\right)\right. \\
& -(\mu \leftrightarrow \nu))
\end{aligned}
$$

$\mathcal{D}^{\mu}(s, t)=s^{\mu}+t^{\mu}-\frac{1}{2}\left(s^{\mu \lambda} t_{\lambda}-t^{\mu \lambda} s_{\lambda}+\gamma\left(s^{\mu} t-s t^{\mu}\right)+\alpha\left(\bar{s}^{\mu} t-s \bar{t}^{\mu}\right)\right)$
$\overline{\mathcal{D}}^{\mu}(s, t)=\bar{s}^{\mu}+\bar{t}^{\mu}-\frac{1}{2}\left(s^{\mu \lambda} \bar{t}_{\lambda}-\bar{s}_{\lambda} t^{\mu \lambda}-\gamma\left(\bar{s}^{\mu} t-s \bar{t}^{\mu}\right)+\beta\left(s^{\mu} t-s t^{\mu}\right)\right)$
$\mathcal{D}(s, t)=s+t-\frac{1}{2}\left(s^{\lambda} \bar{t}_{\lambda}-\bar{s}^{\lambda} t_{\lambda}\right)$
where $\gamma=\sqrt{\alpha \beta}$ and $s^{\mu \nu}, s^{\mu}=s^{\mu 4}, \bar{s}^{\mu}=s^{\mu 5}, s=s^{45}$ are the 4D components of $s^{A B}$, conjugated to $J_{\mu \nu}, x_{\mu}, p_{\mu}$ and h, resp.

- Clearly, the physical interpretation of these "momenta" is not obvious

Generalizations

- It is possible to generalize the Yang algebra by including κ-deformations of both position and momentum space with parameters a_{μ} and b_{μ} (Lukierski et al, arxiv 2023)

$$
\begin{aligned}
{\left[x_{\mu}, x_{\nu}\right] } & =i\left(\beta J_{\mu \nu}+a_{\mu} x_{\nu}-a_{\nu} x_{\mu}\right), \\
{\left[p_{\mu}, p_{\nu}\right] } & =i\left(\alpha J_{\mu \nu}+b_{\mu} p_{\nu}-b_{\mu} p_{\nu}\right), \\
{\left[x_{\mu}, p_{\nu}\right] } & =i\left(\eta_{\mu \nu} h+b_{\mu} x_{\nu}-a_{\nu} p_{\mu}+\gamma J_{\mu \nu}\right), \\
{\left[J_{\mu \nu}, x_{\lambda}\right] } & =i\left(\eta_{\mu \lambda} x_{\nu}-\eta_{\nu \lambda} x_{\mu}+a_{\mu} J_{\lambda \nu}-a_{\nu} J_{\lambda \mu}\right), \\
{\left[J_{\mu \nu}, p_{\lambda}\right] } & =i\left(\eta_{\mu \lambda} p_{\nu}-\eta_{\nu \lambda} p_{\mu}+b_{\mu} J_{\lambda \nu}-b_{\nu} J_{\lambda \mu}\right), \\
{\left[J_{\mu \nu}, h\right] } & =i\left(b_{\nu} x_{\mu}-b_{\mu} x_{\nu}-a_{\nu} p_{\mu}+a_{\mu} p_{\nu}\right), \\
{\left[h, x_{\mu}\right] } & =i\left(\beta p_{\mu}-\gamma x_{\mu}-a_{\mu} h\right), \\
{\left[h, p_{\nu}\right] } & =i\left(-\alpha x_{\mu}+\gamma p_{\mu}+b_{\mu} h\right)
\end{aligned}
$$

- This algebra is still isomorphic to so $(1,5)$, but now the action of the Lorentz invariance is deformed

Applications

- A physical consequence of Yang model is a deformation of the Heisenberg uncertainty relations. In fact, in 3D

$$
\Delta x_{i} \Delta p_{j} \geq \frac{1}{2}\left|\left\langle\left[x_{i}, p_{j}\right]\right\rangle\right|=\frac{1}{2}|\langle h(x, p)\rangle| \delta_{i j}
$$

- One can also calculate corrections to the dynamics of simple models due to the nontrivial symplectic structure, with possible applications to astrophysical observations
- Finally, a more ambitious goal would be to build a quantum field theory based on this framework
- Some of these applications require the use of an extended phase space. In this case the physical interpretation of the additional coordinates needs to be clarified

