Bootstrapped Newtonian compact objects

XII Bolyai-Gauss-Lobachevsky Conference (BGL-2O24):
Non-Euclidean Geometry in Modern Physics and Mathematics

by dr. Octavian MICU
work done in collaboration with dr. Roberto Casadio

Plan of the talk

- The Lagrangian and the equation of motion
- Outer vacuum and boundary conditions
- Stars and black holes with uniform density
- Polytropic stars
- Masses of bootstrapped Newtonian objects
- Binary mergers, mass gap and area law
- Stability of bootstrapped Netwonian dense stars
- Conclusions

Bootstrapped Newtonian gravity

- Motivation:

- Gravity is tested in the weak-field regime, many orders of magnitude below where it becomes dominant, regime in which results are in very good agreement with general relativity;
- Perturbative approaches fail in strong gravitational fields (reason being that all terms in the series contribute roughly the same an the series cannot be truncated);
- Singularity theorems of general relativity require black holes to collapse all the way into a region of vanishing volume and infinite density;
- There are some corpuscular proposals for black hole interiors which would solve the problem of the singularities.
- Bootstrapped Newtonian gravity
- Bottom-up approach;
- It allows us a fresh new look into (extremely) dense self-gravitating stars;
- It allows for highly compact objects with regular densities due to the absence of a Buchdahl limit.
nsmitulb or A subsidiary of INFLPR

Bootstrapped Newtonian Lagrangian [Phys.Rev.D 98 (2018) 10, Eur.Phys...c79(2019)II]

- The bootstrapped Newtonian Lagrangian

$$
\begin{array}{r}
L[V]=L_{\mathrm{N}}[V]-4 \pi \int_{0}^{\infty} r^{2} d r\left[q_{V} \mathcal{J}_{V} V+q_{p} \mathcal{J}_{p} V+q_{\rho} \mathcal{J}_{\rho}\left(\rho+q_{p} \mathcal{J}_{p}\right)\right] \\
=-4 \pi \int_{0}^{\infty} r^{2} d r\left[\frac{\left(V^{\prime}\right)^{2}}{8 \pi G_{N}}\left(1-4 q_{V} V\right)+\left(\rho+3 q_{p} p\right) V\left(1-2 q_{\rho} V\right)\right]
\end{array}
$$

Newtonian part:
$L_{\mathrm{N}}[V]=-4 \pi \int_{0}^{\infty} r^{2} d r\left[\frac{\left(V^{\prime}\right)^{2}}{8 \pi G_{N}}+\rho V\right]$

$$
r^{-2}\left(r^{2} V^{\prime}\right)^{\prime} \equiv \stackrel{\downarrow}{\triangle} V=4 \pi G_{N} \rho
$$

gravitational self-coupling :

$$
\mathcal{J}_{V} \simeq \frac{d U_{\mathrm{N}}}{d \mathcal{V}}=-\frac{\left[V^{\prime}(r)\right]^{2}}{2 \pi G_{N}}
$$

(non-negligible) pressure contribution:

$$
\mathcal{J}_{p} \simeq-\frac{d U_{p}}{d \mathcal{V}}=3 p
$$

higher order term: $\mathcal{J}_{\rho}=-2 V^{2}$

- Euler-Lagrange equation: $\quad \triangle V=4 \pi G_{N}\left(\rho+3 q_{p} p\right) \frac{1-4 q_{\rho} V}{1-4 q_{V} V}+\frac{2 q_{V}\left(V^{\prime}\right)^{2}}{1-4 q_{V} V}$

- Outside the source: $\quad \rho=0, p=0$
and, after solving the EOM, the potential in vacuum becomes:

$$
V_{\mathrm{out}}=\frac{1}{4 q_{V}}\left[1-\left(1+\frac{6 q_{V} G_{N} M}{r}\right)^{2 / 3}\right]
$$

- Boundary conditions:

$$
V_{\text {out }} \underset{r \rightarrow \infty}{\simeq}-\frac{G_{N} M}{r}+q_{V} \frac{G_{N}^{2} M^{2}}{r^{2}}-q_{V}^{2} \frac{8 G_{N}^{3} M^{3}}{3 r^{3}}
$$

$$
\begin{gathered}
V_{\text {in }}(R)=V_{\text {out }}(R) \equiv V_{R}=\frac{1}{4 q_{V}}\left[1-\left(1+6 q_{V} \mathcal{X}\right)^{2 / 3}\right] \\
V_{\text {in }}^{\prime}(R)=V_{\text {out }}^{\prime}(R) \equiv V_{R}^{\prime}=\frac{\mathcal{X}}{R\left(1+6 q_{V} \mathcal{X}\right)^{1 / 3}} \\
V_{\text {in }}^{\prime}(0)=0
\end{gathered}
$$

$$
\mathcal{X} \equiv \frac{G_{N} M}{R}
$$

represents the compactness.

- Stars and black holes of uniform density:

$$
\rho=\rho_{0} \equiv \frac{3 M_{0}}{4 \pi R^{3}} \Theta(R-r)
$$

with the (Newtonian) proper mass in general given by:

$$
M_{0}=4 \pi \int_{0}^{R} r^{2} \rho(r) d r
$$

and the additional constraint given by the conservation equation

$$
p^{\prime}=-V^{\prime}\left(\rho+q_{p} p\right)
$$

- Set the couplings to some numerical values to simplify the equations.
- The complexity of the problem requires one to find solutions separately in two regimes:
- Small and intermediate compactness (stars)
- Large compactness (black holes)

- An approximate solution:

$$
V_{\mathrm{s}}=V_{0}+\frac{G_{N} M_{0}}{2 R^{3}} e^{V_{R}-V_{0}} r^{2}
$$

(series expansion of the potential around $\mathrm{r}=\mathrm{o}$)

- Odd powers vanish because:

$$
V_{\text {in }}^{\prime}(0)=0
$$

- ADM and proper mass relationship:

$$
M_{0}=\frac{M e^{-\frac{\mathcal{X}}{2(1+6)^{1 / 3}}}}{(1+6 \mathcal{X})^{1 / 3}}
$$

- Potential after using the boundary conditions:
$V_{\mathrm{s}}=\frac{\left[(1+6 \mathcal{X})^{1 / 3}-1\right]+2 \mathcal{X}\left[(r / R)^{2}-4\right]}{4(1+6 \mathcal{X})^{1 / 3}}$

Potential $V_{\text {out }}$ (solid line) $v s$ approximate solution (dotted line) vs Newtonian potential (dashed line), for $\mathcal{X}=1$ (left panel), $\mathcal{X}=1 / 10$ (center panel) and $\mathcal{X}=1 / 100$ (right panel).

Pressure (solid line) vs numerical pressure (dotted line) vs Newtonian pressure (dashed line), for $\mathcal{X}=1 / 100$ (left panel), $\mathcal{X}=1 / 10$ (center panel) and $\mathcal{X}=1$ (right panel).

- Rely fully on comparison methods
- Start with simpler eq. in terms of $\psi(r ; A, B)$
- The potential is then written:

$$
V_{\mathrm{in}}=f(r ; A, B) \psi(r ; A, B)
$$

- Solutions for function $f(r ; A, B)$ are not feasible
- Find constants such that

$$
C_{-}<f(r)<C_{+}
$$

- And the potential will be bound by

$$
V_{ \pm}=C_{ \pm} \psi\left(r ; A_{ \pm}, B_{ \pm}\right)
$$

- Approximate linear solution:

$$
V_{\operatorname{lin}} \simeq V_{R}+V_{R}^{\prime}(r-R)
$$

Left panel: E_{-}for $C_{-}=1$. Right panel: E_{+}for $C_{+}=1.6$. Both cases considering $\mathcal{X}=10^{3}$.

Left panel: approximate inner potentials V_{-}(dashed line), \tilde{V} (solid line) and V_{+}(dotted line) for $0 \leq r \leq R$ and exact outer potential $V_{\text {out }}$ (dotted line) for $r>R$. Right panel: approximate inner potentials V_{-}(dashed line), \tilde{V} (solid line) and V_{+}(dotted line) for $0 \leq r \leq R / 5$. Both plots are for $\mathcal{X}=10^{3}$.

- In general relativity
- Schwarzschild radius

$$
R_{H}=2 G_{N} M
$$

- Buchdahl limit (using TOV-equation)

$$
R>(9 / 8) R_{H}
$$

- We assume a Newtonian horizon

$$
2 V\left(r_{H}\right)=-1
$$

Potentials for $R_{\mathrm{H}}=0$ (solid line) and $R_{\mathrm{H}}=R$ (dashed line).

- Horizon inside the source

$$
2 V_{\mathrm{in}}\left(R_{H}=0\right)=-1
$$

- Horizon at the edge of the source
$2 V_{\text {in }}\left(R_{H}=R\right)=2 V_{\text {out }}(R)=-1$

$$
\begin{cases}\text { no horizon } & \text { for } G_{\mathrm{N}} M / R \lesssim 0.46 \\ 0<r_{\mathrm{H}} \leq R \simeq 1.4 G_{\mathrm{N}} M & \text { for } 0.46 \lesssim G_{\mathrm{N}} M / R \leq 0.69 \\ r_{\mathrm{H}} \simeq 1.4 G_{\mathrm{N}} M & \text { for } G_{\mathrm{N}} M / R \gtrsim 0.69 .\end{cases}
$$

- No Buchdahl limit exists for Bootstrapped Newtonian stars!

Polytropic stars ${ }_{[P h y s . R e v: D 102 ~(2020) ~ 10] ~}^{10}$

- Polytropic eq. of state:

$$
p(r)=\gamma \rho^{n}(r)=\tilde{\gamma} \rho_{0}\left[\frac{\rho(r)}{\rho_{0}}\right]^{n}
$$

- same EOM as before with couplings set to 1:
- Use conservation eq. and EOS to write EOM
in terms of the density and compactness.

- Therefore, use Gaussian density profiles:

$$
\rho= \begin{cases}\rho_{0} e^{-\frac{r^{2}}{b^{2} R^{2}}}, & r \leq R \\ 0, & r>R .\end{cases}
$$

- impose a slight discontinuity at:

$$
\rho_{R} \equiv \rho(R)=0
$$

Upper panels: density profile obtained numerically for $\tilde{\gamma}=1$, $n=5 / 3$ (solid lines) and Gaussian approximation (dashed line) for the smallest compactness (left panel: dimensionless quantities; right panel: dimensionful quantities). Lower panels: density (solid lines) and pressure (dashed lines) for the cases in the upper panels

Polytropic Stars ${ }_{[P h y s . R e v . D ~}^{102}$ (2020) 10]

...skip intermediary steps. Some conclusions:

- Numerical errors (resulting from solving the EoM) are smaller for larger values of b.
- The Newtonian and bootstrapped Newtonian potentials are more different for more compact objects. The differences becomes insignifiant for smaller densities.
- Newtonian potential generates deeper wells for most cases (all except upper left plot).
- In Newtonian physics $M_{0} / M=\mathbf{1}$, while in the bootstrapped Newtonian model it is (almost) always smaller than one.
- Bootstrapped Newtonian stars can be much more compact than general relativistic ones and can withstand higher pressures.

Bootstrapped potentials for $\mathcal{X}=0.01$ and $\mathcal{X}=0.1$ we used $n=3 / 2$, while for $\mathcal{X}=0.7$ we used $n=5 / 3$. The dashed black lines represent the Newtonian potential V_{N} for a Gaussian matter distribution with the same b.

M_{0} / M as a function of b and \mathcal{X}.

- Generally the ADM mass and the proper mass are different! (In Newtonian physics they are the same)
- Go back to the simple case of uniform densities!
- We take a look at the effect of the higher order term coupling q_{ρ} on the relationship between the ADM mass and proper mass, so we set the other couplings to 1 .
- We use the same approximation as before (series expansion of the potential around $\mathrm{r}=\mathrm{o}$) and get:

$$
V_{\mathrm{s}} \simeq \frac{R^{2}\left[(1+6 \mathcal{X})^{1 / 3}-1\right]+2 \mathcal{X}\left(r^{2}-4 R^{2}\right)}{4 R^{2}(1+6 \mathcal{X})^{1 / 3}}
$$

- What is most interesting though is that only the ratio of the masses depends on the coupling:

$$
\frac{M_{0}}{M} \simeq \frac{e^{-\frac{\mathcal{X}}{2(1+6 \mathcal{X})^{1 / 3}}}(1+8 \mathcal{X})}{(1+6 \mathcal{X})^{2 / 3}\left[1-q_{\rho}+\frac{(1+8 \mathcal{X})}{(1+6 \mathcal{X})^{1 / 3}} q_{\rho}\right]}
$$

On the masses of bootstrapped Newtonian stars ${ }_{\text {INoo.l.Phys.Let.A.457(2020)21] }}$

- In the low compactness limit the ratio goes to one.
- There is a critical value for which this ratio is equal to one:
$q_{\mathrm{s}} \simeq \frac{(1+8 \mathcal{X}) e^{-\frac{\mathcal{X}}{2(1+6 \mathcal{X})^{1 / 3}}}-(1+6 \mathcal{X})^{1 / 3}}{(1+6 \mathcal{X})^{1 / 3}\left[1+8 \mathcal{X}-(1+6 \mathcal{X})^{1 / 3}\right]}$
- Below the critical value of the coupling the ratio is greater than one.
- Above the critical value the ratio is smaller than one.
- A quite similar treatment with similar results was performed for the high compactness regime. (details can be found in the reference above)

Figure 3.24: Ratio M_{0} / M for small and medium compactness for $q_{\rho}=1$ (dashed line), and $q_{\rho}=0$ (solid line). In these two cases M_{0} is always different from M (dotted line).

FIGURE 3.25: Critical value q_{s} of q_{ρ} for which $M=M_{0}$ for small and medium compactness.

- This is interesting in the context of the LIGO discovery of gravitational waves.
- We start from the horizon radius:

$$
V_{\text {out }}\left(R_{H}\right)=-1 / 2 \quad \rightarrow \quad R_{H}=\frac{6 q_{V} G_{N} M}{\left(1+2 q_{V}\right)^{3 / 2}-1}
$$

\& ADM - proper mass relation, which reads:
low compactness

$$
M_{0}=\frac{M}{\left(1+6 q_{V} \mathcal{X}\right)^{1 / 3}} \simeq\left(1-2 q_{V} \mathcal{X}\right) M
$$

high compactness (black hole limit and beyond):

$$
M_{0} \simeq \frac{M}{q_{V}^{1 / 3} \mathcal{X}^{1 / 3}}
$$

And following constraints:

- the amount of ejected mass cannot have an arbitrarily small value. This imposes a lower bound on the ejected mass during the merger, quantity which is a function of the masses and radii of the initial stars (or black holes).
- as they increase in size black holes become less and less compact. So, when black holes merge they likely transform into other heavier and less dense black holes.

Binary mergers: mass gap and black hole area law [Phys. 1 ect.B834 (2022) 157455$]$

- For instance in case of the coalescence of two stars we have

$$
\begin{aligned}
& M_{0}^{(f)}=M_{0}^{(1)}+M_{0}^{(2)}-\delta M_{0} \\
& M_{(f)} \simeq\left(1+6 q_{V} \mathcal{X}_{(f)}\right)^{1 / 3}\left[\frac{M_{(1)}}{\left(1+6 q_{V} \mathcal{X}_{(1)}\right)^{1 / 3}}+\frac{M_{(2)}}{\left(1+6 q_{V} \mathcal{X}_{(2)}\right)^{1 / 3}}-\delta M_{0}\right]
\end{aligned}
$$

and for the the merger of two stars (of low compactness) we also expect to have

$$
\delta M \simeq M_{(1)}+M_{(2)}-M_{(f)} \geq \delta M_{0}
$$

Separate cases:
\star Stars merging into stars

* Stars merging into a black hole
*Star merging with a black hole
\star Black holes merging into a black hole

- Stars merging into stars:

$$
\begin{gathered}
\delta M_{0} \gtrsim\left(1-\frac{\mathcal{X}_{(1)}}{\mathcal{X}_{(f)}}\right) M_{(1)}+\left(1-\frac{\mathcal{X}_{(2)}}{\mathcal{X}_{(f)}}\right) M_{(2)} \\
\mathcal{X}_{(f)} \lesssim \frac{\mathcal{X}_{(1)} M_{(1)}+\mathcal{X}_{(2)} M_{(2)}}{M_{(1)}+M_{(2)}-\delta M_{0}}
\end{gathered}
$$

- Constrains the increase of the compactness by the amount of proper mass/energy emitted
- Stars merging into a black hole:

$$
\mathcal{X}_{(f)} \lesssim \frac{1}{q_{V}}+6 \frac{\mathcal{X}_{(1)} M_{(1)}+\mathcal{X}_{(2)} M_{(2)}}{M_{(1)}+M_{(2)}-\delta M_{0}}
$$

- RHS must be greater than one, since the first term is greater than one.

Binary mergers: mass gap and black hole area law Phys.Let.B854 (0202) 1574551

- Star merging with a black hole:

$$
\mathcal{X}_{(f)}^{1 / 3} \lesssim \frac{q_{V}^{-1 / 3}\left(M_{(1)}+M_{(2)}-\delta M_{0}\right)}{M_{(1)} /\left(q_{V}^{1 / 3} \mathcal{X}_{(1)}^{1 / 3}\right)+\left(1-2 q_{V} \mathcal{X}_{(2)}\right) M_{(2)}-\delta M_{0}}
$$

- Merger of two black holes:
- When black holes merge, it is assumed that no proper mass is emitted!

$$
\mathcal{X}_{(f)} \lesssim\left(\frac{M_{(1)}+M_{(2)}}{M_{(1)} \mathcal{X}_{(2)}^{1 / 3}+M_{(2)} \mathcal{X}_{(1)}^{1 / 3}}\right)^{3} \mathcal{X}_{(1)} \mathcal{X}_{(2)}
$$

- If $\quad \mathcal{X}_{(1)} \simeq \mathcal{X}_{(2)} \equiv \mathcal{X}_{(i)} \quad \rightarrow \quad \delta M \simeq\left(M_{(1)}+M_{(2)}\right)\left(1-\frac{\mathcal{X}_{(f)}^{1 / 3}}{\mathcal{X}_{(i)}^{1 / 3}}\right) \quad \rightarrow \quad \mathcal{X}_{(f)} \lesssim \mathcal{X}_{(i)}$

- Area law and black hole thermodynamics

- Suppose a black hole of mass M absorbs a star of a much smaller mass δM, and no significant amount of proper mass is radiated away. Also, assume for simplicity that $X_{(f)} \simeq X_{(1)} \equiv \mathscr{X} \geq 1$ and $X_{2} \ll 1$. The black hole area $\mathscr{A}=4 \pi R_{H}^{2}$ changes as:

$$
\frac{\Delta \mathcal{A}}{\mathcal{A}} \simeq 2 \frac{M_{(f)}-M}{M} \simeq 2 q_{V}^{1 / 3} \mathcal{X}^{1 / 3}\left(1-2 q_{V} \mathcal{X}_{(2)}\right) \frac{\delta M}{M}
$$

- Entropy:
- The temperature is: $T=\frac{\kappa}{2 \pi}, \quad \kappa=\left.a(r)\right|_{r=R_{H}}=\frac{G_{N} M}{R_{H}^{2}}\left(1+6 q_{V} \frac{G_{N} M}{R_{H}}\right)^{-1 / 3}$
or

$$
T \simeq \frac{\beta\left(q_{V}\right)}{8 \pi G_{N} M}
$$

which leads to the entropy: $d S=\frac{d M}{T} \quad \rightarrow \quad S=\frac{4 \pi G_{N} M^{2}}{\beta\left(q_{V}\right)}=\beta\left(q_{V}\right) \frac{\mathcal{A}}{4 G_{N}}$

Binary mergers: mass gap and black hole area law [Phys. 1 ect.B834 (2022) 157453$]$

- The entropy can be used to impose more constraints on the result of a two black holes collision
- no proper matter energy is emitted during the process
- entropy is an additive quantity
- entropy must increase in such a collision
- for simplification purposes assume initial black holes have roughly the same compactness

$$
\mathcal{X}_{(f)}^{2 / 3}\left(M_{(1)}+M_{(2)}\right)^{2} \geq \mathcal{X}_{(i)}^{2 / 3}\left(M_{(1)}^{2}+M_{(2)}^{2}\right)
$$

- Along with the previous constraint obtained for this case we get

$$
\left[\frac{M_{(1)}^{2}+M_{(2)}^{2}}{\left(M_{(1)}+M_{(2)}\right)^{2}}\right]^{3 / 2} \lesssim \frac{\mathcal{X}_{(f)}}{\mathcal{X}_{(i)}} \lesssim 1
$$

Binary mergers: mass gap and black hole area law Phys.Let.B834 102221574531

- GW150914 signal observed by LIGO

$$
E_{\mathrm{GW}}=\delta M \simeq M_{(1)}\left(1-\frac{\mathcal{X}_{(f)}^{1 / 3}}{\mathcal{X}_{(1)}^{1 / 3}}\right)+M_{(2)}\left(1-\frac{\mathcal{X}_{(f)}^{1 / 3}}{\mathcal{X}_{(2)}^{1 / 3}}\right)
$$

- The final black hole mass is computed as:

$$
M_{(f)} \simeq \mathcal{X}_{(f)}^{1 / 3}\left[\frac{M_{(1)}}{\mathcal{X}_{(1)}^{1 / 3}}+\frac{M_{(2)}}{\mathcal{X}_{(2)}^{1 / 3}}\right] \quad \rightarrow \quad 62 \simeq 29\left(\frac{\mathcal{X}_{(f)}}{\mathcal{X}_{(1)}}\right)^{1 / 3}+36\left(\frac{\mathcal{X}_{(f)}}{\mathcal{X}_{(2)}}\right)^{1 / 3}
$$

- Since initial masses are similar, we assume similar compactness values and find

$$
\frac{\mathcal{X}_{(f)}}{\mathcal{X}_{(i)}} \simeq 0.87
$$

Dynamical stability of bootstrapped Newtonian stars

- Newton's second law for a thin shell (considering $q_{V}=q_{p}=q_{\rho} \equiv 1$):

$$
(\rho d r) \ddot{r}=-\left[(\rho+p) V^{\prime}+p^{\prime}\right] d r \quad \text { or } \quad \ddot{r}=-\frac{\rho+p}{\rho} V^{\prime}-\frac{1}{\rho} p^{\prime}
$$

- When the acceleration is null:

$$
p^{\prime}=-(\rho+p) V^{\prime}
$$

- Homologous adiabatic perturbations: $\quad p=p_{0}\left(\frac{\rho}{\rho_{0}}\right)^{\gamma}$

$$
\begin{aligned}
& d m_{0} \rightarrow \text { constant } \\
& r_{0} \rightarrow r_{0}\left(1+\frac{\delta r}{r_{0}}\right) \longrightarrow \frac{\delta \rho}{\rho_{0}}=-3 \frac{\delta r}{r_{0}} \quad \frac{\delta p}{p_{0}}=\gamma \frac{\delta \rho}{\rho_{0}} \equiv-3 \gamma \frac{\delta r}{r_{0}}, \longrightarrow\left({ }^{2}\right)
\end{aligned}
$$

$$
d m_{0} \ddot{r}=-\left(1+p_{0} \frac{\rho^{\gamma-1}}{\rho_{0}^{\gamma}}\right) V^{\prime} d m_{0}-4 \pi r^{2} d p
$$

Dynamical stability of bootstrapped Newtonian stars

- Homogeneous stars:
(after performing some simple algebra)

$$
\ddot{\delta r}=-\frac{\mathcal{X}\left[(3 \gamma-1) \rho_{0}+2 p_{0}\right]}{R^{2}(1+6 \mathcal{X})^{1 / 3} \rho_{0}} \delta r
$$

With solution of the type:

$$
\delta r=C_{+} e^{i \omega t}+C_{-} e^{-i \omega t}
$$

where

$$
\omega=\sqrt{\frac{\mathcal{X}\left[(3 \gamma-1) \rho_{0}+2 p_{0}\right]}{R^{2}(1+6 X)^{1 / 3} \rho_{0}}}
$$

$->$ positive values under the $\sqrt{ } \rightarrow$ oscillatory behaviour and the star is dynamically stable;
\rightarrow negative values under the $\sqrt{ } \rightarrow$ the star is unstable.

Dynamical stability of bootstrapped Newtonian stars

- Polytropic stars:

$$
\rho= \begin{cases}\rho_{0} e^{-\frac{r^{2}}{b^{2} R^{2}}}, & r \leq R \\ 0, & r>R .\end{cases}
$$

equations are much more involved, but can be brought to the simple form:

$$
\ddot{\delta} r=-f(\mathcal{X}, r, R, \gamma, n, b) \delta r \equiv-f(r) \delta r
$$

-> one can plot $\mathrm{f}(\mathrm{r})$ for various parameters sets.

Dynamical stability of bootstrapped Newtonian stars

- Polytropic stars:

Plots of $f(r)$ as a function of r for $R=1$. Top panels: the adiabatic index increases from left to right. Middle panels: the polytropic index $\overline{n \text { increases from left to right. Bottom panels: the }}$ gaussian width b varies, increasing from left to right. Note the different ranges on the vertical axis

Top panels: 3D plots of $\mathrm{f}(\mathrm{R})$ for $b=0.3$ (left), $b=0.5$ (center) and $b=0.9$ (right). Middle panels: 3D plots of $\mathrm{f}(\mathrm{R})$ for $n=7 / 6$ (left), $n=3 / 2$ (center) and $n=11 / 6$ (right). Bottom panels: 3D plots of $\mathrm{f}(\mathrm{R})$ for $\gamma=7 / 6$ (left), $\gamma=3 / 2$ (center) and $\gamma=11 / 6$.

Bootstrapped Newtonian Gravity Discussion

- One of the most features of the model is the absence of a Buchdahl limit, which means that the (matter) source can be held in equilibrium by a large enough (and finite) pressure for any (finite) compactness value;
- For compactness values of about $\mathrm{X} \simeq 0.46$, a horizon appears within the source. The horizon radius becomes equal to the radius of the source when the compactness value reaches $\mathrm{X} \simeq 0.69$;
- For polytropic stars, the matter density can be well approximated by a Gaussian distribution. For flatter distributions we recover the results obtained for uniform distributions (a consistency test);
- In the high compactness regime the bootstrapped picture generates stars that are more compact than the ones resulting from solving the TOV equation. This picture holds following comparisons to General Relativity.
- Bootstrapped Newtonian stars with uniform densities are dynamically stable to holonomous adiabatic perturbations.
- Overall, flatter density distributions seem to be favoured in this model.

Harmonic vs areal coordinates

- Harmonic coordinates given by the harmonic coordinate conditions:

$$
\Gamma^{\lambda} \equiv g^{\mu \nu} \Gamma_{\mu \nu}^{\lambda}=0
$$

- Starting from the metric

$$
d s^{2}=-B(r) d t^{2}+A(r) d r^{2}+r^{2} d \Omega^{2}
$$

coordinates X_i are harmonic

$$
\begin{array}{r}
X_{1}=R(r) \sin \theta \cos \phi ; \\
X_{2}=R(r) \sin \theta \sin \phi ; \\
X_{3}=R(r) \cos \theta ;
\end{array}
$$

$$
\begin{aligned}
& \text { if: } \quad \square X_{i}=0 \\
& \quad \square t=0 \\
& \text { or: } \quad \frac{d}{d r}\left(r^{2} B^{1 / 2} A^{-1 / 2} \frac{d R}{d r}\right)-2 B^{1 / 2} A^{1 / 2} R=0
\end{aligned}
$$

