HUN REN

Numerical analysis of Gravitational Waves

From eccentric sources

Reimann Geometry General Relativity

"I am your father's, brother's, nephew's, cousin's, former roommate. - What does that make us? - Absolutely nothing...,

Spaceballs — 1987

Algorithms Used in GW Search

- In the LAL library (used by the mainstream): Numerical, EOB, Taylor waveforms
- Excellently modeling the currently detectable waveforms
- Problems:
= Only short waveforms
\Rightarrow Only specific waveforms
= No eccentric waveforms
=Mostly spin-aligned

New GW Detectors on the Horizon eLISA, Einstein Telescope, Cosmic Explorer

- Targeting new sources like NS-NS binaries, merging galactic nuclei, supernovae, stochastic background
- Significantly longer observational times \Rightarrow longer waveforms (up to 6 months - eLISA)
- Research of the inspiral phase
- Eccentricity and spin effects will be important in the orbital evolution of compact binaries
- eLISA got the green light this year

Gravitational Waves Linearized theory

- Starting from the Einstein equation

$$
R_{a b}-\frac{1}{2} g_{a b} R=\frac{8 \pi G}{c^{4}} T^{a b}
$$

- Take a small perturbation of the Einstein eq. around a flat spacetime (gauge symmetry of GR)

$$
g_{a b}=\eta_{a b}+h_{a b}, \quad h_{a b} \ll 1
$$

- The Riemann-tensor expressed in $h_{a b}$ linear order

$$
R_{a b c d}=\frac{1}{2}\left(\partial_{b} \partial_{c} h_{a d}+\partial_{a} \partial_{d} h_{b c}-\partial_{a} \partial_{c} h_{b d}-\partial_{b} \partial_{d} h_{a c}\right)
$$

- The linearized Einstein equation
$\square \bar{h}_{a b}+\eta_{a b} \partial^{c} \partial^{d} \bar{h}_{c d}-\partial^{c} \partial_{b} \bar{h}_{a c}-\partial^{c} \partial_{a} \bar{h}_{b c}=-\frac{16 \pi G}{c^{4}} T_{a b}$
- Using the gauge freedom of GR and choosing the De Donder gauge, $\partial^{b} \bar{h}_{a b}=0$

$$
\square \bar{h}_{a b}=-\frac{16 \pi G}{c^{4}} T_{a b}
$$

Motivation

Two-body problem of General Relativity

Post-Newtonian Expansion

- Built upon two assumptions:

1. gravity inside the source is weak like in the post-Minkowsikian expansion
2. the motion of the components of the source is slow

- The equation of motion

$$
\begin{aligned}
& \boldsymbol{a}=\mathbf{a}_{\mathrm{N}}+\mathbf{a}_{\mathrm{PN}}+\mathbf{a}_{2 \mathrm{PN}}+\mathbf{a}_{3 \mathrm{PN}}+\mathbf{a}_{4 \mathrm{PN}}+\underset{\mathrm{SO}}{\mathbf{a}} 1.5 \mathrm{PN}+\underset{\mathrm{SS}}{\mathbf{a}} 2 \mathrm{PN}+\underset{\mathrm{BT}}{\mathbf{a}} \underset{2.5 \mathrm{PN}}{\mathrm{RR}}+\underset{\mathrm{SO}}{\boldsymbol{a}} 2.5 \mathrm{PN} \\
& +\underset{\mathrm{SO}}{\mathbf{a}} 3.5 \mathrm{PN}+\underset{\mathrm{BT}}{\mathbf{a}}{ }_{3.5 \mathrm{PN}}^{\mathrm{RR}}+\underset{\mathrm{SS}}{\underset{\mathrm{a}}{\mathrm{a}}} \underset{3.5 \mathrm{PN}}{\mathrm{RR}}+\underset{\mathrm{SO}}{\mathbf{a}} \begin{array}{l}
\mathrm{RR} \\
3.5 \mathrm{PN}
\end{array}
\end{aligned}
$$

- The radiation field equation

$$
\begin{aligned}
h_{i j}= & \frac{2 G \mu}{c^{4} D}\left[Q_{i j}+P^{0.5} Q_{i j}+P Q_{i j}+P^{1.5} Q_{i j}+P^{2} Q_{i j}+P Q_{i j}^{S O}\right. \\
& \left.+P^{1.5} Q_{i j}^{S O}+P^{2} Q_{i j}^{S O}+P Q_{i j}^{S S}+P^{1.5} Q_{i j}^{t a i l}\right]
\end{aligned}
$$

Effective One-Body Approach

- reduce the conservative dynamics of the general relativistic two-body problem
- Mathisson-Papapetrou-Dixon equation is taken on a deformed Kerr black hole
- Hamiltonian of the Mathisson-Papapetrou-Dixon equations:

$$
\begin{gathered}
H_{\mathrm{eff}}=M \eta\left(\beta^{i} p_{i}+\alpha \sqrt{1+\gamma^{i j} p_{i} p_{j}+Q_{4}(p)}+H_{\mathrm{S}}\right)+H_{S C} \\
H=M \sqrt{1+2 \eta\left(\frac{H_{\mathrm{eff}}}{M \eta}-1\right)}
\end{gathered}
$$

- In the EOBNR framework, the quasicircular part of the radiation field is divided into two:
* the inspiral-plunge
* post-merger phase

$$
\begin{gathered}
h_{l m}^{(C)}=h_{l m}^{(N, \epsilon)} \hat{e}_{\mathrm{eff}}^{(\epsilon)} T_{l m} e^{i \delta_{l m}}\left(\rho_{l m}\right)^{l} N_{l m} \\
h_{l m}^{(N, \epsilon)}=\frac{M \eta}{D} n_{l m}^{(\epsilon)} c_{l+\epsilon} V_{\Phi}^{l} Y^{l-\epsilon,-m}\left(\frac{\pi}{2}, \Phi\right)
\end{gathered}
$$

- For the eccentric part, in the radiation field terms up to the second post-Newtonian order are considered

Numerical Results

- 2 codes were used; one based on the PN, CBwaves; and one based on EOB, SEOBNRE
- both codes use a 4th-order Runge-Kutta integrator
- on an identical initial parameter space

Initial Parameters

$m_{1}\left[M_{\odot}\right]$	$10 \ldots 100$
$m_{2}\left[M_{\odot}\right]$	$10 \ldots 100$
$R\left[M_{\text {tot }}\right]$	30
$R_{\min }\left[M_{\text {tot }}\right]$	6
e_{0}	0.003
$d t[s e c]$	$1 / 4096$

- SEOBNRE uses the initial orbital frequency: $f_{\text {init }}=\frac{c^{3}}{\pi G\left(m_{1}+m_{2}\right) M_{\odot} \sqrt{\mathfrak{x}_{0}^{3}}}$

Evolution of the orbital separation with 5 Hz initial orbital frequency at $\mathrm{q}=1 / 100$

Mismatch/Unfaithfulness

- To calculate the mismatch, one first has to calculate the Overlap:

$$
\mathcal{O}=\frac{\left\langle h_{1}, h_{2}\right\rangle}{\sqrt{\left\langle h_{1}, h_{1}\right\rangle\left\langle h_{2}, h_{2}\right\rangle}}
$$

where

$$
\left\langle h_{1}, h_{2}\right\rangle=4 \Re \int_{f_{\max }}^{f_{\min }} \frac{\tilde{h}_{1} \tilde{h}_{2}^{*}}{S_{n}(f)} \mathrm{d} f
$$

- The mismatch (or unfaithfulness) is the marginalized overlap over some quantities

$$
\mathscr{M}=\max _{t, \phi, \psi} \mathcal{O}\left(h_{1}, h_{2}\right)
$$

where the max was taken over timeshifts, polarization angles, and phase

- The kuibit was used.

Mismatch map for the spin-aligned configurations

Mismatch map for the non-aligned spin configurations

$\mathrm{X}_{1}=0.6$, aligned, $\mathrm{m}_{2}=100 \mathrm{M}_{\odot}, \mathrm{m}_{2}=10 \mathrm{M}_{\circ}$

not-spinning, $m_{2}=100 M_{\circ}, m_{2}=10 M_{\circ}$

$X_{1}=0.6$, aligned, $m_{2}=10 \mathrm{M}_{\circ}, m_{2}=10 \mathrm{M}_{\circ}$

$X_{1}=0.6$, aligned, $m_{2}=10 M_{\odot}, m_{2}=10 M_{\circ}$

$x_{1}=0.6$, aligned, $m_{2}=100 M_{\circ}, m_{2}=10 M_{\circ}$

"Publish or perish!"

Eugene Garfield - The Academic Man: A Study in the Sociology of a Profession (1942)

Acknowledgment

- Deeply grateful to WSCLab. for computational resources provided
- This work was made in collaboration with Dániel Barta
- Thanks for the insight and pieces of advice given by László Á. Gergely

In memoriam of Mätyás Zd. Vasaith

Thanks for your attention！
 ！
 －
 589
 $-$
 ．
 －

\qquad （2） \qquad 2 （路 ． 18 I教竞
（5）

$\operatorname{cosec}+\cos$

