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Spaceballs — 1987

‘’I am your father’s, brother’s, nephew’s, 
cousin’s, former roommate. - What does 

that make us? - Absolutely nothing…,,



Algorithms Used in GW Search

• In the LAL library (used by the 
mainstream): Numerical, EOB, Taylor 
waveforms 

• Excellently modeling the currently 
detectable waveforms 

• Problems: 

➡Only short waveforms 

➡Only specific waveforms 

➡No eccentric waveforms 

➡Mostly spin-aligned



New GW Detectors on the Horizon

• Targeting new sources like NS-NS binaries, 
merging galactic nuclei, supernovae, 
stochastic background 

• Significantly longer observational times ⟹ 
longer waveforms (up to 6 months — eLISA) 

• Research of the inspiral phase 

• Eccentricity and spin effects will be 
important in the orbital evolution of 
compact binaries 

• eLISA got the green light this year

eLISA, Einstein Telescope, Cosmic Explorer



Gravitational Waves
• Starting from the Einstein equation 

 

• Take a small perturbation of the Einstein eq. around a 
flat spacetime (gauge symmetry of GR) 

 

• The Riemann-tensor expressed in  linear order 

 

• The linearized Einstein equation 

 

• Using the gauge freedom of GR and choosing the De 
Donder gauge,  
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Two-body problem of 
General Relativity



Maarten van de Meent - Own work

https://commons.wikimedia.org/w/index.php?title=User:MvdMeent&action=edit&redlink=1


Post-Newtonian Expansion
• Built upon two assumptions: 

1. gravity inside the source is weak like in the post-Minkowsikian expansion 

2. the motion of the components of the source is slow 

• The equation of motion 

 

• The radiation field equation 
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Effective One-Body Approach
• reduce the conservative dynamics of the general relativistic two-body problem 

• Mathisson–Papapetrou–Dixon equation is taken on a deformed Kerr black hole  

• Hamiltonian of the Mathisson–Papapetrou–Dixon equations: 

 

 

• In the EOBNR framework, the quasicircular part of the radiation field is divided into two: 

❖ the inspiral-plunge 

❖ post-merger phase 

 

 

• For the eccentric part, in the radiation field terms up to the second post-Newtonian order are considered
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Numerical Results
• 2 codes were used; one based on the PN, CBwaves; and one based on EOB, 

SEOBNRE 

• both codes use a 4th-order Runge—Kutta integrator 

• on an identical initial parameter space

Initial Parameters
m1 [M⊙] 10 … 100
m2 [M⊙] 10 … 100
R [Mtot] 30

Rmin [Mtot] 6
e0 0.003

dt [sec] 1/4096

• SEOBNRE uses the initial orbital frequency: finit =
c3

πG(m1 + m2)M⊙ 𝔯3
0



Evolution of the orbital separation with 5 Hz initial orbital frequency at q = 1/100 



Evolution of the orbital separation with 5 Hz initial orbital frequency 



Mismatch/Unfaithfulness
• To calculate the mismatch, one first has to calculate the Overlap: 

 

where 

 

• The mismatch (or unfaithfulness) is the marginalized overlap over some quantities 

 

where the  was taken over timeshifts, polarization angles, and phase 

• The kuibit was used.
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Mismatch map for the not-spinning configurations
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Mismatch map for the spin-aligned configurations



Mismatch map for the non-aligned spin configurations



not-spinning, m2 = 10 M⊙, m2 = 10 M⊙ not-spinning, m2 = 100 M⊙, m2 = 10 M⊙ χ1 = 0.6, aligned, m2 = 10 M⊙, m2 = 10 M⊙

χ1 = 0.6, aligned, m2 = 100 M⊙, m2 = 10 M⊙ χ1 = 0.6, aligned, m2 = 100 M⊙, m2 = 10 M⊙χ1 = 0.6, aligned, m2 = 10 M⊙, m2 = 10 M⊙



not-spinning, m2 = 10 M⊙, m2 = 10 M⊙ not-spinning, m2 = 100 M⊙, m2 = 10 M⊙ χ1 = 0.6, aligned, m2 = 10 M⊙, m2 = 10 M⊙

χ1 = 0.6, aligned, m2 = 100 M⊙, m2 = 10 M⊙ χ1 = 0.6, aligned, m2 = 100 M⊙, m2 = 10 M⊙χ1 = 0.6, aligned, m2 = 10 M⊙, m2 = 10 M⊙



Eugene Garfield — The Academic Man: A Study in the Sociology of a Profession (1942)

‘’Publish or perish!’’
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