Universes without Time and Consequences

Wladimir-Georges Boskoff

Ovidius University

Gödel's universe best description

- It exists a first Gödel's metric on a set M which satisfies EFE:

$$
d s^{2}=\left(d x^{0}\right)^{2}-\left(d x^{1}\right)^{2}+\frac{e^{2 x^{1}}}{2}\left(d x^{2}\right)^{2}-\left(d x^{3}\right)^{2}+2 e^{x^{1}} d x^{0} d x^{2}
$$

- Gödel's transformation of coordinates $\bar{M} \rightarrow M$

$$
\left\{\begin{aligned}
x^{0} & =2 t-\phi \sqrt{2}+2 \sqrt{2} \arctan \left(\tan \left(\frac{\phi}{2}\right) e^{-2 r}\right), \phi \neq \pi ; x^{0}=2 t \text { if } \phi=\pi \\
x^{1} & =\ln [\cosh (2 r)+\cos \phi \sinh (2 r)] \\
x^{2} & =\frac{\sqrt{2} \sin \phi \sinh (2 r)}{\cosh (2 r)+\cos \phi \sinh (2 r)} \\
x^{3} & =2 y .
\end{aligned}\right.
$$

- Gödel's second metric on \bar{M},

$$
d s^{2}=4\left[d t^{2}-d r^{2}-d y^{2}+\left(\sinh ^{4} r-\sinh ^{2} r\right) d \phi^{2}+2 \sqrt{2} \sinh ^{2} r d \phi d t\right] .
$$

The new metric on \bar{M} allows the orientation in time for vectors, highlighting time-like future oriented loops and closed future oriented time-like chain of curves on M.

Our Universe without Time in $f(R)=R$ and $f(R)=R^{2}$ Gravity

- First metric

$$
d s^{2}=e^{x^{3}}\left(d x^{0}\right)^{2}+\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}-\left(d x^{3}\right)^{2}
$$

which satisfies EFE on $M=\mathbf{R}^{4}$.

- The change of coordinates $(t, r, \phi, y) \rightarrow\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$:

$$
F:\left\{\begin{array}{l}
x^{0}=t, t \in \mathbf{R}, \\
x^{1}=r \sin \phi, r>0, \phi \in \mathbf{R} \\
x^{2}=r \cos \phi, \\
x^{3}=y, y \in \mathbf{R}
\end{array}\right.
$$

- Second metric

$$
d \bar{s}^{2}=e^{y} d t^{2}+d r^{2}+r^{2} d \phi^{2}-d y^{2}
$$

on the set \bar{M}.

Some details about the first metric in $f(R)=R$ gravity

$-M=\mathbf{R}^{4}$ and

$$
d s^{2}=e^{x^{3}}\left(d x^{0}\right)^{2}+\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}-\left(d x^{3}\right)^{2}
$$

therefore the only nonzero Ricci tensor components are

$$
R_{00}=\frac{1}{4} e^{x^{3}} ; \quad R_{33}=-\frac{1}{4},
$$

that is

$$
R=\frac{1}{2} .
$$

The exotic matter in $f(R)=R$ gravity

Replacing, the Einstein's field equations are

$$
R_{i j}-\frac{1}{2} R g_{i j}=8 \pi G T_{i j}
$$

where

$$
T_{i j}=\frac{1}{8 \pi G}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -\frac{1}{4} & 0 & 0 \\
0 & 0 & -\frac{1}{4} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Some details about the first metric in $f(R)=R^{2}$ gravity

In modified gravity, when $f(R)=R^{2}$, the Einstein field equations should have the form

$$
f^{\prime}(R) R_{i j}-\frac{1}{2} f(R) g_{i j}+\Lambda g_{i j}=8 \pi G T_{i j}
$$

After computations, we obtain for the cosmological constant $\Lambda=\frac{1}{4}$ the equality

$$
2 R R_{i j}-\frac{1}{2} R^{2} g_{i j}+\frac{1}{4} g_{i j}=8 \pi G T_{i j}
$$

where $T_{i j}$ has the unexpected same form as in the case of the usual Einstein field equations, that is

$$
T_{i j}=\frac{1}{8 \pi G}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -\frac{1}{4} & 0 & 0 \\
0 & 0 & -\frac{1}{4} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

I. Organizing our Universe without Time - establishing the time and space coordinates

- For the coordinates x^{1} and x^{2} when $r>0 ; \phi \in \mathbf{R}$ it can be seen a 2π periodicity of x^{1} and x^{2} when r is fixed.
x^{1} and x^{2} become the cylindrical coordinates for the initial set $M\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$.
- The points (t, r, ϕ, y) and $(t, r, \phi+2 k \pi, y), k \in \mathbf{Z}$ in \bar{M} describe a same point $\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ in M.
- The coordinates (r, ϕ, y) in \bar{M} determine completely the coordinates $\left(x^{1}, x^{2}, x^{3}\right)$ in M, therefore the coordinates x^{0} and t play the same role, i.e. t-lines of matter in \bar{M} are x^{0} - lines of matter in M.

$$
\begin{gathered}
d s^{2}=e^{x^{3}}\left(d x^{0}\right)^{2}+\left(\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}-\left(d x^{3}\right)^{2}\right) \\
d \bar{s}^{2}=e^{y} d t^{2}+\left(d r^{2}+r^{2} d \phi^{2}-d y^{2}\right)
\end{gathered}
$$

II. Organizing our Universe without Time: establishing the orientation in time

- Denote the second metric coefficients by $\bar{g}_{i j}=\bar{g}_{i j}(t, r, \phi, y)$.
- $v=\left(v^{0}, v^{1}, v^{2}, v^{3}\right)$ is a time-like vector if $\bar{g}_{i j} v^{i} v^{j}>0$.
- The vector $e=\left(e^{0}, e^{1}, e^{2}, e^{3}\right)=(1,1,1,0)$ has the property

$$
\bar{g}_{i j} e^{i} e^{j}=e^{y}+1+r^{2}>0
$$

that is e is a time-like vector.

- For a time-like vector v we say that v is future pointing if $\bar{g}_{i j} e^{i} v^{j}>0$.
- If $\bar{g}_{i j} e^{i} v^{j}<0$ the vector v is called past pointing.

Let us observe that if v is time-like and future pointing, then $-v$ is still time-like but past pointing.
It is easy to see that $-e$ is past pointing because

$$
\bar{g}_{i j} e^{i}\left(-e^{j}\right)=-e^{y}-1-r^{2}<0 .
$$

This way \bar{M} becomes time orientable.

The Existence of Future Oriented Time-Like Loops in M

Theorem 1: M allows time-like future oriented loops.
Proof. Consider the curve $\alpha(s):=(0, R, s, 0)$ of \bar{M}.
Its velocity vector is $\dot{\alpha}(s)=\left(v^{0}, v^{1}, v^{2}, v^{3}\right)=(0,0,1,0)$. We have

$$
d \bar{s}^{2}(\dot{\alpha}(s), \dot{\alpha}(s))=\bar{g}_{i j} v^{i} v^{j}=\bar{g}_{22}(0, R, s, 0)\left(v^{2}\right)^{2}=R^{2} \cdot 1>0
$$

i.e. this vector is a time-like one. More,

$$
d \bar{s}^{2}(\dot{\alpha}(s), e)=\bar{g}_{i j} v^{i} e^{j}=\bar{g}_{22}(0, R, s, 0) v^{2} e^{2}=R^{2} \cdot 1 \cdot 1>0,
$$

that is the vector $\dot{\alpha}(s)$ is future pointing.

- Subsequently, the image in M of the α-curve from \bar{M} will be considered a future oriented time-like curve of M.
In M the values at 0 and 2π shows a same point, therefore this curve starting from a point of M is returning at the same point of M. We have obtained a time-like future oriented loop of M.

I. The Existence of Closed Future Oriented Time-Like Chain of Curves in M

Obseve that the points $\bar{E}_{1}\left(t_{1}, R, 0,0\right)$ and $\bar{E}_{2}\left(t_{2}, R, 0,0\right)$ from \bar{M} induce in M the points $E_{1}\left(t_{1}, R, 0,0\right)$ and $E_{2}\left(t_{2}, R, 0,0\right)$.
Theorem 2: i) If $R^{2}>\frac{1}{2 \pi}\left|t_{2}-t_{1}\right|$, the two points E_{1} and E_{2} of M can be joined by a time-like future oriented curve in M.
ii) M allows time-like future oriented closed chain of curves.

Proof: i) The curve

$$
\gamma(s)=\left(t_{1}+\frac{t_{2}-t_{1}}{2 \pi} s, R, s, 0\right) \subset \bar{M}
$$

is time-like because the vector
$\dot{\gamma}(s)=\left(w^{0}, w^{1}, w^{2}, w^{3}\right)=\left(\frac{t_{2}-t_{1}}{2 \pi}, 0,1,0\right)$ has the property
$d \bar{s}^{2}(\dot{\gamma}(s), \dot{\gamma}(s))=\bar{g}_{i j} w^{i} w^{j}=\bar{g}_{00}\left(w^{0}\right)^{2}+\bar{g}_{22}\left(w^{2}\right)^{2}=e^{0} \cdot\left(\frac{t_{2}-t_{1}}{2 \pi}\right)^{2}+R^{2} \cdot 1>$

II. The Existence of Closed Future Oriented Time-Like Chain of Curves in M

More,

$$
d \bar{s}^{2}(\dot{\gamma}(s), e)=\bar{g}_{i j} w^{i} e^{j}=\bar{g}_{00} w^{0} e^{0}+\bar{g}_{22} w^{2} e^{2}=e^{0} \cdot \frac{t_{2}-t_{1}}{2 \pi} \cdot 1+R^{2} \cdot 1 \cdot 1
$$

which is positive according to the statement, that is $\dot{\gamma}(s)$ is pointing the future.
Subsequently, we have in M a time-like future oriented curve connecting ($t_{1}, R, 0,0$) by ($t_{2}, R, 0,0$).
Therefore E_{1} and E_{2} in M, are connected by a time-like future oriented curve which tell us precisely that the event E_{2} occurs after the event E_{1}.

III. The Existence of Future Oriented Time-Like Closed Chain of Curves in M

ii) Using the previous idea we can create same type time-like future oriented curves between E_{2} and E_{3} and between E_{3} and E_{1}.
The concatenation of the three time-like future oriented curves is a the time-like future oriented closed "chain of curves".

Taking into consideration how events occur in an order related to the future pointing time-like tangent vectors of the curves, we can conclude that neither t or x^{0} can be proper time coordinates, because if it is so, moving forward in time we return in our past.

Therefore no global time-coordinate exists in the universe we presented.

The Existence of a Wormhole Solution related to our Universe without Time

Consider the metric

$$
d \bar{s}^{2}=e^{y} d t^{2}+d r^{2}+\left(r^{2}+a^{2}\right) d \phi^{2}-d y^{2}
$$

suggested by the previous second metric of our universe without time.
The metric above describes a wormhole solution - Ellis type.
When the parameter a approaches 0 , i.e. $a \rightarrow 0$, this metric becomes exactly the second metric studied before, i.e.

$$
d \bar{s}^{2}=e^{y} d t^{2}+d r^{2}+r^{2} d \phi^{2}-d y^{2}
$$

The wormhole solution creates our universe without time when the wormhole disappears.

I. Some details about the wormhole solution in $f(R)=R$ gravity

$$
\Gamma_{\phi \phi}^{r}=-r ; \Gamma_{r \phi}^{\phi}=\Gamma_{\phi r}^{\phi}=\frac{r}{r^{2}+a^{2}} ; \Gamma_{y t}^{t}=\Gamma_{t y}^{t}=\frac{1}{2} ; \Gamma_{t t}^{y}=\frac{1}{2} e^{y} .
$$

It results

$$
R_{t t}=\frac{1}{4} e^{y} ; \quad R_{r r}=\frac{-a^{2}}{\left(r^{2}+a^{2}\right)^{2}}, \quad R_{\phi \phi}=\frac{-a^{2}}{r^{2}+a^{2}}, \quad R_{y y}=\frac{-1}{4}
$$

and

$$
R=\frac{1}{2}-\frac{2 a^{2}}{\left(r^{2}+a^{2}\right)^{2}}
$$

Therefore, the Einstein field equations

$$
R_{i j}-\frac{1}{2} R g_{i j}+\Lambda g_{i j}=8 \pi G T_{i j}
$$

are satisfied for the cosmological constant $\Lambda=\frac{1}{4}$ and "the matter" induced by the matrix

II. Some details about the wormhole solution in $f(R)=R$ gravity

$$
A(r)=\frac{1}{8 \pi G}\left(\begin{array}{cccc}
\Psi(r) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \Psi(r)
\end{array}\right) \text { where } \Psi(r)=\frac{1}{4}+\frac{a^{2}}{\left(r^{2}+a^{2}\right)^{2}}
$$

in the form $T_{i j}=\left(a_{i j}\right) \cdot A(r)$.
Let us observe the geometric description of the Ψ function,

$$
\Psi(r)=\frac{1}{2}(1-R) .
$$

This shows that the stress-energy tensor has a geometric matter depending by the Ricci scalar of curvature R.

III. Some details about the wormhole solution in $f(R)=R^{2}$ gravity

In this case the computations lead to $\Lambda=0$ and

$$
2 R R_{i j}-\frac{1}{2} R^{2} g_{i j}=8 \pi G T_{i j}
$$

where "the matter" is induced by the matrix

$$
B(r)=\frac{R(1-R)}{16 \pi G}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

in the form

$$
T_{i j}=\left(a_{i j}\right) \cdot B(r)
$$

Indicating the traversable wormhole

The wormhole metric is obtained for $t=0$ and $y=0$, i.e.

$$
d s^{2}=d r^{2}+\left(r^{2}+a^{2}\right) d \phi^{2}
$$

which is in fact the metric of a catenoid. Explanations below:

$$
\left\{\begin{array}{l}
x=a \cosh \frac{x^{1}}{a} \cos x^{2} \\
y=a \cosh \frac{x^{1}}{a} \sin x^{2} \\
z=x^{1}
\end{array}\right.
$$

and its corresponding metric is

$$
\begin{aligned}
d s^{2}=\cosh ^{2} & \frac{x^{1}}{a}\left(d x^{1}\right)^{2}+a^{2} \cosh ^{2} \frac{x^{1}}{a}\left(d x^{2}\right)^{2} \\
& \left\{\begin{array}{l}
r=a \sinh \frac{x^{1}}{a} \\
\phi=x^{2}
\end{array}\right.
\end{aligned}
$$

The Existence of an Expanding Universe without Time

The first metric

$$
d s^{2}=e^{x^{3}}\left(d x^{0}\right)^{2}+e^{x^{0}}\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}-\left(d x^{3}\right)^{2}\right]
$$

satisfies Einstein's field equations on $M=\mathbf{R}^{4}$.
The change of coordinates $(t, r, \phi, y) \rightarrow\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$:

$$
F:\left\{\begin{array}{l}
x^{0}=t, t \in \mathbf{R}, \\
x^{1}=r \sin \phi, r>0, \phi \in \mathbf{R}, \\
x^{2}=r \cos \phi, \\
x^{3}=y, y \in \mathbf{R}
\end{array}\right.
$$

transforms the initial metric into the metric

$$
d \bar{s}^{2}=e^{y} d t^{2}+e^{t}\left[d r^{2}+r^{2} d \phi^{2}-d y^{2}\right]:=\bar{g}_{i j} d \bar{u}^{i} \bar{u}^{j}
$$

on the set \bar{M} described by the new coordinates (t, r, ϕ, y).
We can obtain similar results related to time-like future pointing loops and closed curves.

Some details related to the first metric

$$
\begin{aligned}
R_{00}=\frac{1}{4} e^{x^{3}-x^{0}}-\frac{3}{4} ; R_{11} & =-\frac{3}{4} e^{x^{0}-x^{3}}=R_{22} ; \quad R_{33}=-\frac{1}{4}+\frac{3}{4} e^{x^{0}-x^{3}} . \\
R & =\frac{1}{2} e^{-x^{0}}-3 e^{-x^{3}} .
\end{aligned}
$$

Replacing, the Einstein's field equations

$$
R_{i j}-\frac{1}{2} R g_{i j}=8 \pi G T_{i j}
$$

are satisfied for the exotic matter represented by the tensor

$$
T_{i j}=\frac{1}{32 \pi G}\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 3 e^{x^{0}-x^{3}}-1 & 0 & 0 \\
0 & 0 & 3 e^{x^{0}-x^{3}}-1 & 0 \\
0 & 0 & 0 & -3 e^{x^{0}-x^{3}}
\end{array}\right)
$$

Properties of our Expanding Universe without Time

- The orientation in time is done in the same manner as in our previous example.
- The existence of the time-like future oriented loops in M is done same way, using the time-like future oriented curve $\alpha(s)=(0, R, s, 0) \subset \bar{M}$
- The existence of closed time-like future oriented chain of curves in M starts from the same points \bar{E}_{1} and \bar{E}_{2} in \bar{M} having the coordinates ($t_{1}, R, 0,0$) and ($t_{2}, R, 0,0$) respectively and the time-like future oriented curve

$$
\gamma(s)=\left(t_{1}+\frac{t_{2}-t_{1}}{2 \pi} s, R, s, 0\right) \subset \bar{M} .
$$

- same type computation
- ... same conclusions...

The Mathematical Structure of the Massless Scalar Field of our Expanding Universe without Time

In the general case the massless scalar field (MSF) is described by a function $u(t, x, y, z)$ satisfying the massless Klein-Gordon PDE

$$
e^{z} u_{t t}+e^{t}\left(u_{x x}+u_{y y}-u_{z z}\right)=0
$$

To solve it, we propose the solution in the form

$$
u(t, x, y, z)=a(t) b(x) c(y) d(z)
$$

When we separate the variables we obtain constant left and right members. In fact there are three constants k, k_{1} and k_{2} which appear.

How we separate the variables? Obtaining k and $a(t)$

We can arrange the equation in the form

$$
\frac{a^{\prime \prime}(t)}{e^{t} a(t)}=\frac{-b^{\prime \prime}(x) c(y) d(z)-b(x) c^{\prime \prime}(y) d(z)+b(x) c(y) d^{\prime \prime}(z)}{e^{z} b(x) c(y) d(z)} .
$$

The first member depends on t and the second member depends on x, y, z, therefore both member are constant. The constant can be choose k. Therefore we obtain two equations; the first one

$$
a^{\prime \prime}(t)-k e^{t} a(t)=0
$$

can be seen as a Bessel type ODE with the solution

$$
a(t)=\phi_{0} \sum_{0}^{\infty} \frac{k^{n}}{(n!)^{2}} e^{n t}, k \neq 0
$$

If $k=0$ then $a(t)=A_{1} t+A_{2}$.

How we separate the variables? Obtaining k_{1}

The second one is deduced from

$$
k e^{z} b(x) c(y) d(z)+b(x) c^{\prime \prime}(y) d(z)-b(x) c(y) d^{\prime \prime}(z)=-b^{\prime \prime}(x) c(y) d(z)
$$

in the form

$$
-\frac{b^{\prime \prime}(x)}{b(x)}=\frac{k e^{z} c(y) d(z)+c^{\prime \prime}(y) d(z)-c(y) d^{\prime \prime}(z)}{c(y) d(z)}=k_{1}
$$

Who is $b_{k_{1}}$?

It results

$$
-\frac{b^{\prime \prime}(x)}{b(x)}=k_{1}, k_{1} \in \mathbf{R}
$$

If $k_{1}=0$ the solution is $b_{0}=B_{1} x+B_{2}$.
If $k_{1} \neq 0$ the solution of this ODE depends on the the sign of k_{1}.
If $k_{1}=-l^{2}$ the equation to solve is $b^{\prime \prime}(x)-I^{2} b(x)=0$, while if $k_{1}=I^{2}$ the equation is $b^{\prime \prime}(x)+I^{2} b(x)=0$.
In the first case the solution is $b_{-}(x)=A e^{l x}+B e^{-l x}$, while in the second case the solution is $b_{+}(x)=A \sin I x+B \cos I x$.

How we separate the variables? Obtaining k_{2} and $c_{k_{2}}(y)$

If we continue when $k \neq 0$ we have

$$
k_{1} c(y) d(z)=k e^{z} c(y) d(z)+c^{\prime \prime}(y) d(z)-c(y) d^{\prime \prime}(z)
$$

which leads to

$$
k_{1}-\frac{c^{\prime \prime}(y)}{c(y)}=k e^{z}-\frac{d^{\prime \prime}(z)}{d(z)} .
$$

Both members are constant, therefore we have to study the following two equations

$$
\frac{c^{\prime \prime}(y)}{c(y)}=k_{2}
$$

and

$$
k e^{z}-\frac{d^{\prime \prime}(z)}{d(z)}=k_{1}-k_{2}
$$

The first differential equation is studied exactly as we did it for the function $b(x)$. According to the constant k_{2} which can be 0 , negative or positive, we have the solutions denoted by $c_{0}(y), c_{-}(y)$ and $c_{+}(\underline{y})$.

How we separate the variables? Obtaining α and $d_{\alpha}(z)$

We continue when $k \neq 0$. The equation

$$
\frac{d^{\prime \prime}(z)}{d(z)}=\alpha+k e^{z}, \alpha:=k_{2}-k_{1}
$$

is transformed into the Bessel type ODE

$$
v^{2} \phi^{\prime \prime}(v)+v \phi^{\prime}(v)-4\left(k v^{2}+\alpha\right) \phi(v)=0 .
$$

It is shown that this equation allows non-zero solutions if and only if
$\alpha \in\left\{0, \frac{1}{4}\right\}$. If $\alpha=0$ then

$$
d_{\alpha=0}(z)=D \sum_{0}^{\infty} \frac{k^{n}}{(n!)^{2}} e^{n z}
$$

If $\alpha=\frac{1}{4}$ then

$$
d_{\alpha=1 / 4}(z)=E \sum_{0}^{\infty} \frac{k^{n}}{(n+1)(n!)^{2}} e^{(n+1 / 2) z}
$$

The Massless Scalar Field solution

If $k=0, d^{\prime \prime}(z)=\alpha d(z)$ has a solution of type d_{α} as above. For $\alpha=0$ the $d_{0}(z)=D_{1} z+D_{2}$.
We can conclude: If $k=0$ the solution is

$$
u(t, x, y, z)=\left(A_{1} t+A_{2}\right) b_{k_{1}}(x) c_{k_{2}}(y) d_{\alpha}(z)
$$

If $k \neq 0$ the solution according to α is

$$
\begin{gathered}
u_{\alpha=0}(t, x, y, z)=\phi_{0} D \sum_{0}^{\infty} \frac{k^{n}}{(n!)^{2}} e^{n t} b_{k_{1}}(x) c_{k_{2}}(y) \sum_{0}^{\infty} \frac{k^{m}}{(m!)^{2}} e^{m z} \\
u_{\alpha=1 / 4}(t, x, y, z)=\phi_{0} E \sum_{0}^{\infty} \frac{k^{n}}{(n!)^{2}} e^{n t} b_{k_{1}}(x) c_{k_{2}}(y) \sum_{0}^{\infty} \frac{k^{m}}{(m+1)(m!)^{2}} e^{(m+1 / 2) z}
\end{gathered}
$$

The Massless Scalar Field exists and it is nonzero if and

 only if $\alpha=0$i) Now consider $x=y=0$. If $k=0$, the vacuum $u_{0}(t, z)$ corresponding to the PDE

$$
e^{z} u_{t t}-e^{t} u_{z z}=0
$$

is described by the product of two first degree polynomials, i.e.

$$
u_{0}(t, z)=\left(C_{1} t+C_{2}\right)\left(C_{3} z+C_{4}\right), \quad C_{m} \in \mathbf{R}
$$

ii) If $k \neq 0$ the vacuum satisfying the previous PDE, now denoted by $u_{k}(t, z)$, has the form

$$
u_{k}(t, z)=C \sum_{n, m=0}^{\infty} \frac{k^{n+m}}{(n!)^{2}(m!)^{2}} e^{n t+m z}
$$

$u_{0}(x, z)$ and $u_{k}(x, z)$ have to be the particular solutions of the general solution $u(t, x, y, z)$ obtained for $x=y=0$.
It results that the vacuum exists if and only if $\alpha=0$.

