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QCD Inspired Dynamical SUSY based on SU(6/22),
Split Octonion Algebra and new Mass Formulae

Sultan Catto

City University of New York and Rockefeller University

A sketchy background of quark dynamics, necessitating ”dy-
namical SUSY” is detailed, followed by an explanation of the
hadronic color algebra based on split-octonions. We then
move on to the evolution of new hadronic mass formulae
with emphasis on group theoretical descriptions and SUSY
suggested by QCD and based on quark-antidiquark symme-
try.



Quarks were originally introduced as exotic entities, far re-
moved from the observed particles in 1964. It turned out
that only triplet combination of quarks (qqq) and antiquarks
(q̄q̄q̄) and also paired combinations (qq̄) are realized in na-
ture, resulting in a very simple scheme for classifying the
observed baryons, antibaryons, and mesons. This scheme
was based on the simple future of unitary groups: any rep-
resentation of group SU(N) can be obtained by the tensor
multiplication of fundamental representations. Because the
restrictions on the existence in nature of quarks themselves
and other combinations of them such as (qq) were purely
formal (and also because of difficulties related to violation of
the Pauli theorem on the connection of spin and statistics),
in the beginning, quarks served only as a device for the simple
and elegant construction of all the hadrons with spin 0 and
1
2 , and also resonant states with spin 1 and 3

2 .
Quark model provided a natural explanation for the existence
of multiplets. In fact, states composed of quark and anti-



quark (not necessarily the same type) can be constructed in
nine different way, giving a meson singlet and octet. Simi-
larly, the 27 combinations of three quarks form a singlet, two
octets, and a decuplet of baryons.
This splitting of the various combinations into multiplets has
a simple justification in the theory of group representations.
Specifically, products of three-dimensional representations of
SU(3) can be decomposed into direct sums of representa-
tions of this group in the following manner: 3 × 3̄ = 1 + 8;
3× 3× 3 = 1 + 8 + 8 + 10.
All the hadrons known in 60’s were successfully described by
the three-quark model. In the early 70’s to account for the
suppression of certain weak decays, it was suggested that
there also exists a fourth quark, carrying charm. Right after
this came the discovery of J/ψ meson which is interpreted
as a cc̄ bound state. Later charmed D and F mesons were
found. At present, we have six types of quarks, each quark
having its own quantum number distinguishing it from others,
which is now referred to as the quark flavor.



Quark model in the form of the above discussion encountered
a fundamental difficulty relating to the existence of symmetric
quark states. If quarks are assigned spin 1

2 (required to obtain
observed hadron spins), we come into a contradiction of the
Pauli principle. Since this model represents certain particles
as combinations of three identical quarks in the same state;
for example, ∆+ resonance with three (u ↑ u ↑ u ↑) quarks
with parallel spins (spin up), and the Ω− hyperon with three
strange quarks with parallel spins (s ↓ s ↓ s ↓) (spin down).
The solution was found by assigning that quarks carried some
new quantum number, later called ”color”. The color of each
quark can take three values. In this new picture the quarks
forming hadrons, for example, ∆+ and Ω−, differ in color, so
there is no conflict with the Pauli principle. Finally, the color
symmetry group was postulated as SU(3)c .
To make the story short, all these developments led to the
existence of supersymmetry, leading to other major develop-
ments in physics. Particularly important are:



1. Kinematic (space-time) supersymmetries:
An example of this is Wess-Zumino invariance. Unfortu-
nately, there is no experimental evidence yet for this type
of supersymmetry.
2. Dynamic (internal) spersymmetries:
Which Gürsey and SC developed using supergroup SU(6/21)
to be described below. Originally Miyazawa used U(6/21)
and invented supersymmetry algebra long before other super-
symmetric constructions were built by others. Starting from
the generalization of SU(3)× SU(3) current algebra, he em-
bedded it in a superalgebra that has SU(6) as its bosonic
subgroup and introduced anticommuting parameters for the
supergroup. Later, he constructed the superalgebras we call
SU(m/n), giving the correct commutation and anticommu-
tation relations among its even and odd generators, and dis-
covered the generalization of the Jacobi identity.
There is a good phenomenological evidence that in a rota-
tionally excited baryon a quark-diquark (q−D) structure is fa-



vored over a three quark (qqq) structure. Regge trajectories
for mesons and baryons are closely parallel; both have a slope
of about 0.9 GeV−2. At large spin two of the quarks form a
diquark (D = qq), a bilocal object at one end of a bag, the re-
maining quark being at the other. For the light quarks Gürsey
and I had shown that the underlying quark-diquark symme-
try leads to supersymmetric SU(6/21) symmetry between
mesons and baryons, going beyond Miyazawa symmetry, in a
modern context. This new scheme uses split octonion alge-
bra that produces the algebraic description of color degrees
of freedom, supresses color-symmetric and space-symmetric
quark configurations, and leads to existence of exotic me-
son (diquark-antidiquark) states that are experimentally con-
firmed. Our results are readily expandable into explanations
of tetraquark and multiquark states.



Further background:
Leading mesonic trajectories associated with the lowest spin
0, 1, and 2 are parallel. Also leading baryonic trajectories
with s = 1

2 ,
3
2 are similarly mutually parallel. These hint at

a phenomenological symmetry between mesons of different
spin and baryons of a different spin. For hadrons made up
of three light flavor quarks u, d , and s, this symmetry is
described by the group SU(6) × O(3). SU(6) classifies the
lowest elements of the trajectories into multiplets while O(3)
accounts for the rotational excitations on the leading trajec-
tories. Mesonic and baryonic trajectories are nearly parallel
to one another with a universal slope of α′ = 0.9 Gev−2.
This is the hallmark of new symmetry, indeed a supersym-
metry, between bosonic mesons and fermionic baryons. Here
a manifest supersymmetric observable is the Regge slope, a
universal constant of hadronic physics, apparently indepen-
dent of flavor, spin and statistics,
The separation between the mesonic trajectories is nearly the



same as the one between baryonic trajectories suggesting that
the same mechanism which breaks the SU(6) symmetry must
also be responsible for breaking its supersymmetric exten-
sion. Finally, the near linearity of the trajectories implies
that the quark binding potential is almost linear, in contrast
to quarkonia where a nonrelativistic Schrödinger theory suf-
fices, relativistic quantum mechanics should be applied to
light quarks.
In the quark model of Gell-Mann and Zweig, mesons and
baryons are (qq̄) and (qqq) bound states. So it is natural
to conceive of any symmetry between mesons and baryons
at the quark level as arising from an effective supersymme-
try between an antiquark q̄ and bound (D = qq) states or
diquarks.
We recall that the quark q, with s = 1

2 and unitary spin of
a flavor SU(3) triplet (3) belongs to the SU(6) sextet (6)
representation. The low-lying baryons are then in its (56)
representation. Since the (56) is contained in 6 × 21 =



56 + 70, the diquark with s = 0 or 1 must be in the (21)
of SU(6). Consequently, the sought for hadronic supersym-
metry must transform the SU(6) multiplets (6) and (21),
both color antitriplets, into each other. It must therefore
be 27-dimensional with 6 fermionic and 21 bosonic states,
fitting into SU(6/21). Realization of the q̄ − D symmetry,
and hence also q− D̄ symmetry, will generally transform the
meson qq̄ not to just baryons qqq and antibaryons q̄q̄q̄ but
also to exotic mesons D − D̄, belonging to the SU(6) repre-
sentations 1, 35 and 405. The (1) and (35) are 0+ and 1+

mesons while the (405) also includes mesons with spin 2+

and isospin 2. All the low energy hadrons now sit in the ad-
joint representation of SU(6/21) with both spin and isospin
having values 0, 1

2 , 1,
3
2 and 2.

The earlier introduction of supersymmetry was in connection
with dual string models of hadrons which naturally gave rise
to parallel linear meson and baryon trajectories. Unfortu-
nately, these specific Ramond, and Neveu-Schwarz models,



beside being unrealistic, are only relativistic (i.e. Lorentz in-
variant) in 10 spacetime dimensions. They did not make a
comeback till recent years, albeit as Theories of Everything,
and their deep connection to division and Jordan algebras
which we will not discuss here. Through years the difficult
search for a consistent 4-dimensional hadronic superstring
theory has continued without significant success, along with
attempts such as the large N-limit of QCD.
Under the color group SU(3)c , meson qq̄ and diquark (D =
qq) states transform as

qq : 3× 3 = 3̄ + 6 ; qq̄ : 3× 3̄ = 1 + 8 (1)

and under the spin flavor SU(6) they transform as

qq : 6× 6 = 15 + 21 ; qq̄ : 6× 6̄ = 1 + 35 (2)

Dimensions of internal degrees of quarks and diquarks are
shown in the following table:



SUf (3) SUs(2) dim.
q � s = 1/2 3× 2 = 6

D
� �
�
�

s = 1
s = 0

6× 3 = 18
3× 1 = 3

If one writes qqq as qD, then the quantum numbers of D
are 3̄ for color since when combined with q must give a color
singlet, and 21 for spin-flavor since combined with color must
give antisymmetric wavefunctions. The quantum numbers
for q̄ are for color, 3̄, and for spin-flavor, 6̄. Thus q̄ and
D have the same quantum numbers (color forces can not
distinguish between q̄ and D). Therefore there is a dynamic
supersymmetry in hadrons with supersymmetric partners

ψ =
(

q̄
D

)
, ψ̄ = (q D̄) (3)

We can obtain all hadrons by combining ψ and ψ̄: mesons
are qq̄, baryons are qD, and exotics are DD̄ states.



A quick review: Inside rotationally excited baryons, QCD
leads to the formation of diquarks well separated from the re-
maining quark. At this separation the scalar, spin-independent,
confining part of the effective QCD potential is dominant.
Since QCD forces are also flavor-independent, the force be-
tween the quark q and the diquark D inside an excited baryon
is essentially the same as the one between q and the antiquark
q̄ inside an excited meson. Thus the approximate spin-flavor
independence of hadronic physics expressed by SU(6) sym-
metry is extended to SU(6/21) supersymmetry, through a
symmetry between q̄ and D, resulting in the parallelism of
mesonic and baryonic Regge trajectories.



Algebraic justification: Color Algebra
We now give an algebraic justification for our remarks above.
We will find answers through an algebra built in terms of
octonions and their split basis.
The exact, unbroken color group SU(3)c is the backbone of
the strong interaction. It is worthwhile to understand its role
in the diquark picture more clearly.
In what follows, we first give a simple description of octonion
algebra (also known as Cayley algebra). Later we’ll show how
to build split octonion algebra that will close into a fermionic
Heisenberg algebra. Split octonion algebra will then be shown
to produce algebra of color forces in QCD in application to
hadronic supersymmetry when the split units and their con-
jugates become associated with quark and antiquark fields,
respectively.



An octonion x is a set of eight real numbers
x = (x0, x1, . . . , x7) = x0e0 + x1e1 + . . . + x7e7 (4)

that are added like vectors and multiplied according to the
rules

e0 = 1, e0ei = eie0 = ei , i = 0, 1, . . . , 7 (5)

eαeβ = −δαβ + εαβγeγ. α, β, γ = 1, 2, . . . , 7 (6)

where e0 is the multiplicative unit element and eα’s are the
imaginary octonion units. The structure constants εαβγ are
completely antisymmetric and take the value 1 for combina-
tions

εαβγ = (165), (257), (312), (471), (543), (624), (736) (7)

Note that the summation convention is used for repeated
indices.
The octonion algebra C is an algebra defined over the field
Q of rational numbers, which as a vector space over Q has
dimension 8.



We now give reasons for the incorporation of the octonion
algebra for hadronic physics, showing only they, through their
split octonionic parts provide the correct description of the
color algebra in hadrons. In an earlier publication, Cest-
mir Burdik and I had shown new diagrammatical multipli-
cation rules for doublets and triplets of octonionic units in
our attempt to extend the E8 group into E9+1, or E10 with a
hope of building E10×E8×E8 extended heterotic string the-
ory for incorporation of supergravity using Jordan algebras.
First of all, two of the colored quarks in the baryon com-
bine into an anti-triplet 3× 3 = 3̄ + (6), and in a nucleon
3× 3̄ = 1 + (8). The (6) partner of the diquark and the
(8) partner of the nucleon do not exist. In hadron dynamics
the only color combinations to consider are 3× 3→ 3̄ and
3̄× 3→ 1. These relations imply the existence of split octo-
nion units ui defined below through a representation of the
Grassmann algebra {ui , uj} = 0, i = 1, 2, 3. What is a bit
strange is that operators ui , unlike ordinary fermionic opera-



tors, are not associative. We also have 1
2[ui , uj ] = εijk u

∗
k . The

Jacobi identity does not hold since [ui , [uj , uk ]] = −ie7 6= 0,
where e7, anticommute with ui and u∗i .

The behavior of various states under the color group is
best seen if we use split octonion units defined by

u0 =
1

2
(1 + ie7), u∗0 =

1

2
(1− ie7) (8)

uj =
1

2
(ej + iej+3), u∗j =

1

2
(ej − iej+3), j = 1, 2, 3 (9)

The automorphism group of the octonion algebra is the 14-
parameter exceptional group G2. The imaginary octonion
units eα(α = 1, ..., 7) fall into its 7-dimensional representa-
tion.
Under the SU(3)c subgroup of G2 that leaves e7 invariant,
u0 and u∗0 are singlets, while uj and u∗j correspond, respec-

tively, to the representations 3 and 3̄. The multiplication



table can now be written in a manifestly SU(3)c invariant
manner (together with the complex conjugate equations):

u2
0 = u0, u0u

∗
0 = 0 (10)

u0uj = uju
∗
0 = uj , u∗0uj = uju0 = 0 (11)

uiuj = −ujui = εijku
∗
k (12)

uiu
∗
j = −δiju0 (13)

where εijk is completely antisymmetric with εijk = 1 for ijk =
123, 246, 435, 651, 572, 714, 367; and zero otherwise. Here,
one sees the virtue of octonion multiplication. If we consider
the direct products

C : 3⊗ 3̄ = 1 + 8 (14)

G : 3⊗ 3 = 3̄ + 6 (15)

for SU(3)c , then these equations show that octonion multi-
plication gets rid of 8 in 3⊗ 3̄, while it gets rid of 6 in 3⊗ 3.
Combining Eq.(??) and Eq.(??) we find



(uiuj)uk = −εijku∗0 (16)

Thus the octonion product leaves only the color part in 3⊗ 3̄
and 3⊗3⊗3, so that it is a natural algebra for colored quarks.
For convenience, we now produce the following multiplication
table for the split octonion units:

u0 u∗0 uk u∗k
u0 u0 0 uk 0
u∗0 0 u∗0 0 u∗k
uj 0 uj εjkiu

∗
i −δjku0

u∗j u∗j 0 −δjku∗0 εjkiui

It is worth noting that ui and u∗j behave like fermionic anni-
hilation and creation operators:

{ui , uj} = {u∗i , u∗j } = 0, {ui , u∗k} = −δiku0 (17)

The quarks, being in the triplet representation of the color
group SU(3)c , are represented by the local fields qiα(x), where



i = 1, 2, 3 is the color index and α the combined spin-flavor
index. Antiquarks at point y are color antitriplets q̄iβ(y).
Consider the two-body systems

C βi
αj = qiα(x1)q̄jβ(x2) (18)

G ij
αβ = qiα(x1)qjβ(x2) (19)

so that C is either a color singlet or color octet, while G is
a color antitriplet or a color sextet. Now C contains meson
states that are color singlets and hence observable. The octet
q− q̄ state is confined and not observed as a scattering state.
In the case of two-body G states, the antitriplets are diquarks
which, inside a hadron can be combined with another triplet
quark to give observable, color singlet, three-quark baryon
states. The color sextet part of G can only combine with a
third quark to give unobservable color octet and color decu-
plet three-quark states. Hence the hadron dynamics is such
that the 8 part of C and the 6 part of G are suppressed.
This can best be achieved by the use of the above octonion



algebra. The dynamical suppression of the octet and sex-
tet states in Eq.(??) and Eq.(??) is, therefore, automatically
achieved. The split octonion units can be contracted with
color indices of triplet or antitriplet fields. For quarks and
antiquarks we can define the ”transverse” octonions (calling
u0 and u∗0 longitudinal units)

qα = uiq
i
α = u · qα, q̄β = u†i q̄

j
β = −u∗ · q̄β (20)

We find
qα(1)q̄β(2) = u0qα(1) · q̄β(2) (21)

q̄α(1)qβ(2) = u∗0 q̄α(1) · qβ(2) (22)

Gαβ(12) = qα(1)qβ(2) = u∗ · qα(1)× qβ(2) (23)

Gβα(21) = qβ(2)qα(1) = u∗ · qβ(2)× qα(1) (24)

Because of the anticommutativity of the quark fields, we have

Gαβ(12) = Gβα(21) =
1

2
{qα(1), qβ(2)} (25)



If the diquark forms a bound state represented by a field
Dαβ(x) at the center-of-mass location x

x =
1

2
(x1 + x2) (26)

when x2 tends to x1 we can replace the argument by x , and
we obtain

Dαβ(x) = Dβα(x) (27)

so that the local diquark field must be in a symmetric rep-
resentation of the spin-flavor group. If the latter is taken to
be SU(6), then Dαβ(x) is in the 21-dimensional symmetric
representation, given by

(6⊗ 6)s = 21 (28)

If we denote the antisymmetric 15 representation by ∆αβ,
we see that the octonionic fields single out the 21 diquark
representation at the expense of ∆αβ. We note that without
this color algebra supersymmetry would give antisymmetric



configurations as noted by Salam and Strathdee in their pos-
sible supersymmetric generalization of hadronic supersymme-
try. Using the nonsingular part of the operator product ex-
pansion we can write

G̃αβ(x1, x2) = Dαβ(x) + r ·∆αβ(x) (29)

The fields ∆αβ have opposite parity to Dαβ; r is the relative
coordinate at time t if we take t = t1 = t2. They play no
role in the excited baryon which becomes a bilocal system
with the 21- dimensional diquark as one of its constituents.
Now consider a three-quark system at time t. The c.m. and
relative coordinates are

R =
1√
3

(r1 + r2 + r3) (30)

~ρ =
1√
6

(2r3 − r1 − r2) (31)

r =
1√
2

(r1 − r2) (32)



giving

r1 =
1√
3

R− 1√
6
~ρ +

1√
2

r (33)

r2 =
1√
3

R− 1√
6
~ρ− 1√

2
r (34)

r3 =
1√
3

R +
2√
6
~ρ (35)

The baryon state must be a color singlet, symmetric in the
three pairs (α, x1), (β, x2), (γ, x3). We find

(qα(1)qβ(2))qγ(3) = −u∗0Fαβγ(123) (36)

qγ(3)(qα(1)qβ(2)) = −u0Fαβγ(123) (37)

so that

−1

2
{{qα(1), qβ(2)}, qγ(3)} = Fαβγ(123) (38)



The operator Fαβγ(123) is a color singlet and is symmetrical
in the three pairs of coordinates. We have

Fαβγ(123) = Bαβγ(R) + ~ρ · B′(R) + r · B′′(R) + C (39)

where C is of order two and higher in ~ρ and r. Because R is
symmetric in r1, r2 and r3, the operator Bαβγ that creates a
baryon at R is totally symmetrical in its flavor-spin indices. In
the SU(6) scheme it belongs to the (56) representation. In
the bilocal q −D approximation we have r = 0 so that Fαβγ
is a function only of R and ~ρ which are both symmetrical in
r1 and r2. As before, B′ belongs to the orbitally excited 70−

representation of SU(6). The totally antisymmetrical (20) is
absent in the bilocal approximation. It would only appear in
the trilocal treatment that would involve the 15-dimensional
diquarks. Hence, if we use local fields, any product of two
octonionic quark fields gives a (21) diquark

qα(R)qβ(R) = Dαβ(R) (40)



and any nonassociative combination of three quarks, or a
diquark and a quark at the same point give a baryon in the
56+ representation:

(qα(R)qβ(R))qγ(R) = −u∗0Bαβγ(R) (41)

qα(R)(qβ(R)qγ(R)) = −u0Bαβγ(R) (42)

qγ(R)(qα(R)qβ(R)) = −u0Bαβγ(R) (43)

(qγ(R)qα(R))qβ(R) = −u∗0Bαβγ(R) (44)

The bilocal approximation gives the (35 + 1) mesons and the
70− baryons with ` = 1 orbital excitation. If we consider a
(28× 28) octonionic matrix belonging to SU(6/22):

Z =

(
u0M uoB u · Q
u0B

† u0N u · D∗
εu∗ · Q† εu∗ · D† u∗0L

)
(45)

Z =

(
m ×m m × n m × 1
n ×m n × n n × 1
1×m 1× n 1× 1

)
(46)



here ε can be 1, −1 or 0. M and N are respectively 6×6 and
21×21 hermitian matrices, B a regular 6×21 matrix, u · Q a
6× 1 column matrix, u · D∗ a 21× 1 column matrix, and L a
1× 1 scalar. Such matrices close under anticommutator op-
erations for ε = 1. Matrices Z in general are nonassociative,
but for ε = 0, when the algebra is no longer semi-simple,
the Jacobi identity is satisfied and we obtain a hadronic su-
peralgebra which is an extension of the algebra SU(6/21).
Its automorphism group includes SU(6)× SU(21)× SU(3)c .
Thus color is automatically incorporated.
The automorphism group of this SU(6/22) algebra includes
SU(m) × SU(n) × SU(3)c . In general for m/2 flavors and
n = 1

2m(m + 1) (after some algebra) we have the above Z .
If m = 6, it includes SU(6) × O(3). If Q is Majorana and
D real, then the group becomes Osp(m/n) × SU(3)c with
subgroup Sp(2n,R)× O(m)× SU(3)c .



A look beyond SU(3)× SU(3): New Mass Formulae
Based on the flavor SU(3) and its breaking into its SU(2)×
U(1) maximal subgroup of isospin and hypercharge, in 1962
the Gell-Mann-Okubo mass formula illuminated the low lying
hadronic spectrum. It led to the pseudoscalar mass formula.
The mass formula for the vector mesons presented a more
delicate problem since the isospin singlet members of the nine
vector mesons, namely the physical ω and φ were mixtures
of octet and singlet states, involving a mixing angle θV as
a new parameter. A year later Okubo proposed a model for
the determination of this mixing angle by requiring the nine
vector mesons to fit into a 3×3 matrix. The group theoretic
interpretation of ideal mixing followed soon after with the
enlargement of SU(3) to SU(3)q × SU(3)q̄ (by Gürsey and
T.D. Lee), one SU(3) being associated with the quarks and
the other SU(3) with the antiquarks that are constituents of
the vector mesons. In our approach, the nonet corresponds
to the representation (3, 3) of this group. Since the u and



d quarks are much lighter than the strange quark s, the
SU(2)×SU(2) subgroup is not badly broken, so that we must
decompose with respect to the subgroup SU(2)q × U(1)q ×
SU(2)q̄ ×U(1)q̄ by using the (I ,Y ) labels for each SU(2)×
U(1). They are shown in the table 1 below.
With respect to the diagonal SU(3) subgroup the hyper-
charge Y is the sum of Yq and Yq̄ while the isospin I is
zero for ω and φ, one for ρ, and 1

2 for K ∗ and K̄ ∗. Now, the
octet breaking hypothesis involves the octet-singlet mixture
given by

K = I (I + 1)− Y 2

4
. (47)

For the nonet the energy breaking requires the combination

E = E0 + a(Kq + Kq̄) + bK . (48)

We find the following assignments shown in the table below:



Particle Iq Iq̄ I Yq Yq̄ Y Kq Kq̄ Kq+Kq̄ K
ω 1/2 1/2 0 1/3 -1/3 0 13/18 13/18 13/9 0
ρ 1/2 1/2 1 1/3 -1/3 0 13/18 13/18 13/9 2
K∗ 1/2 0 1/2 1/3 2/3 1 13/18 -1/9 11/18 1/2
K̄∗ 0 1/2 1/2 -2/3 -1/3 -1 -1/9 13/18 11/18 1/2
φ 0 0 0 -2/3 2/3 0 -1/9 -1/9 -2/9 0

Table 1. Particle assignments

Note that the sum Kq + Kq̄ of the two octet breakings gives
equal spacing for the energy levels and degeneracy for ω and
ρ. It was shown in Okubo’s paper that the rest energy break-
ing formula leads to a quadratic mass formula when the en-
ergy differences are large with respect to the mean energy as
in the case of the pseudoscalar mesons and to a linear mass
formula when the ratio of the energy splittings to the mean
energy is small as in the case of baryons. The vector mesons
being nearer in mass to the baryons than the pseudoscalar
mesons we can use the linear mass formula as also suggested
by the value of the mixing angle being nearer perfect mixing



in this case. Then we get

mω = µ +
13

9
a, (49)

mρ = µ +
13

9
a + 2b, (50)

mK∗ = mK̄∗ = µ +
11

18
a +

1

2
b, (51)

mφ = µ− 2

9
a, (52)

leading to the mass sum rule

2mK∗ = mφ +
1

2
(mω + mρ) (53)

With the choice

µ = 988.4 MeV , a = −142.2 MeV , b = −6.5 MeV
(54)



we find the following masses as compared to experimental
values given in Particle Data Table:

Particle our result experiment
mω 783 782.65
mρ 770 775.49

mK∗ = mK̄∗ 898.25 891.66
mφ 1020 1019.46

Table 2. Calculated masses vs. experiment

and the mass formula Eq.(??) gives deviations much less
than one percent with above choices. The Eq.(??) which
we have derived here using purely the SU(3)× SU(3) group
theoretical assignments shown in Table1 is usually written as
the squared mass formula

4m2
K∗ = 2m2

φ + m2
ω + m2

ρ (55)



for which the deviations are much larger than the linear for-
mula we wrote down.
It is also important to note that the quantum numbers of
Table 1 which forbid the decay of the φ into pions, or more
generally of the ss̄ system into systems involving u and d
quarks is consistent with the OZI rule. This rule must be vi-
olated in QCD through gluonic intermediate states and yet it
is surprisingly well verified, reinforcing the symmetry breaking
chain that gives Eq.(??).
The next step came from an attempt to put pseudoscalar
mesons and vector mesons in a single multiplet. This is nat-
ural in a quark model since the lightest quarks u d s have
each spin 1

2 , giving 6 states as a representation of the group
SU(6). Then the group SU(6)q × SU(6)q̄ has a SU(6) diag-
onal subgroup that generalizes the SU(3) of Gell-Mann and
Ne’eman through the incorporation of the quark spin associ-
ated with SU(2). However, spin is conserved independently
of total relativistic angular momentum only for free particles,



so that spin can only combined with flavor quantum numbers
like isospin if quarks inside the baryon or meson behave like
approximately free fermions. This is a posteriori justified by
the asymptotic freedom of the QCD theory. The low lying
mesons now fit in the singlet and 35-dimensional adjoint rep-
resentation of SU(6) with η

′
being the singlet and the eight

pseudoscalars and the three s = 1 states of the vector nonet
completing the 35. Assuming again symmetry breaking to
arise from a mixture of SU(3) singlet and the eight member
of the octet in the symmetric 35×35 product which contains
the 1, 35, 189 and 405 representations of SU(6), one finds
the new general formula

E = E0 + α[I (I + 1)− Y 2

4
] + βY + γs(s + 1). (56)

For baryons, E is the mass, for mesons β vanishes and one can
approximate E by µ2 since pseudoscalar mesons are involved.
This gives breaking of the (56) baryons (s = 1

2 octet together



with s = 3
2 decuplet) as well as the (35) mesons. For instance

one obtains the mass formula

mK∗
2 −mρ

2 = mK
2 −mπ

2 (57)

relating vector and pseudoscalar meson mass splittings and
hence showing approximate spin independence of the binding
forces in addition to flavor independence implied by SU(3)
symmetry.
At this point the baryons which are three quark(qqq) fermionic
systems are treated seperately from the (qq̄) bosonic mesons.
But if the quark binding forces are approximately spin inde-
pendent they should also be blind to the distinction between
fermions with half odd-integer spin and bosons with integer
spin. It is this idea that led Miyazawa in the years 1966-68
to propose a fermion-boson symmetry in the hadronic spec-
trum which later became known as supersymmetry. What
are the indications for a broken symmetry for hadrons? First
of all low lying mesonic spectrum for s = 0, 1 extends from



0.14 GeV to 1.02 GeV while the s = 1
2 ,

3
2 baryons cover the

range 0.94 GeV to 1.67 GeV , so that the two spectra over-
lap. The mass splittings between adjacent isotopic multiplets
are also similar, being of the order of 0.1 GeV in both cases.
Hence all low lying hadrons seem to be members of a single
supermultiplet with the spin taking the values 0, 1

2 , 1,
3
2 . An-

other experimental evidence is provided by excited hadronic
states with s ≥ 2. If such states are represented by points
on a Chew-Frautschi plot of m2 versus s, then they fall on
parallel linear Regge trajectories. The astounding fact is that
the slopes of the meson and baryon trajectories are nearly
equal. This is a manifestation of deep and unexpected su-
persymmetry between excited (qq̄) and (qqq) states.
The mathematical expression of supersymmetry arises through
a generalization of Lie algebras to superalgebras. When a Lie
algebra is su(n) it can be extended to a graded algebra (su-
peralgebra) su(m/n) with even and odd generators, the even
generators being paired with commuting (bosonic) parame-



ters and the odd generator with the Grassmann (fermionic)
parameters. The algebra can then be exponentiated to the
supergroup SU(m/n). This was done by Miyazawa who de-
rived the correct commutation and anticommutation rela-
tions for such a superalgebra as well as the generalized Jacobi
identity. This discovery antidates the supersymmetry in dual
resonance models (Ramond; Neveu and Schwarz 1971) or
supersymmetry in quantum field theories (Golfand and Likth-
man (1971); Volkov and Akulov (1973)) invariant under the
super-Poincare’ group (Wess and Zumino (1974)) that gen-
eralizes special relativity. Miyazawa looked for a supergroup
that would contain SU(6) and settled on broken SU(6/21).
He showed that an SU(3) singlet-octet of this supergroup
leads to a new kind of mass formula relating fermionic and
bosonic mass splittings. An example for non strange hadrons
is

m∆
2 −mN

2 = mρ
2 −mπ

2 (58)

Note that in a potential approximation (in an earlier paper,



SC) we proved that

m∆
2 −mN

2 =
9

8
(mρ

2 −mπ
2) (59)

with remarkable accuracy of 1% with experiment.
The emergence of the group SU(6/21) can be understood
on the basis of the quark model. The quarks (u, d , s) are
associated with the six dimensional representation of SU(6).
Assuming that two quarks can form a bound state (this being
justified by QCD), the diquarks (qq) belong to the represen-
tation 15 or 21. Actually, the SU(3) color coupled with the
Pauli principle and the SU(3) singlet nature of (qqq) baryon
states gives 21 for the diquark bosonic multiplet. The di-
quarks and quarks can then combine to give baryonic states
which are in the (56) representation of SU(6). It is now clear
that the 6 fermionic q-states and the 21 bosonic q̄q̄ states to-
gether form the 27-dimensional fundamental representation



of the supergroup SU(6/21). The reason we must take the
antidiquark to be in the same multiplet as the quark is given
by QCD based on color SU(3)c . Each of the 6 colored quark
states belongs to the triplet representation of SU(3)c . On
the other hand, the diquark is in the 3̄ representation present
in 3 × 3, so that the antidiquark has the color group repre-
sentation 3. QCD also gives an attractive force between two
quarks (half in strength of the qq̄ force) due to one gluon ex-
change, leading to the formation of qq bound state. Besides
the 27-dimensional representation ξ of SU(6/21) there is also
the complex conjugate 27 representation consisting of anti-
quarks and diquarks. The adjoint representation arises from
the product 27×27 and contains the mesons qq̄ (1+35), the
baryons qqq (56 + 70), the antibaryons q̄q̄q̄ and the exotic
mesons qqq̄q̄ which can be regarded as diquark-antidiquark
DD̄ bound states. Thus QCD provides a basis for formation
of a supermultiplet that contains baryons and mesons, the
starting point of Miyazawa’s model.



The other manifestation of hadronic supersymmetry, namely
parallel Regge trajectories for all hadrons is more difficult to
relate to group theory. It arises naturally from the string
theory of Nambu and Goto (1970) which is associated with
the infinite parameter Virasoro algebra (1969) rather than a
Lie algebra. The parallel Regge trajectories arise from the
flavor and spin independence of the qq̄ or qq forces. QCD
is certainly flavor independent. As to approximate spin in-
dependence, there is mounting evidence that the confining
potential is a relativistic scalar rather than the fourth compo-
nent of a vector potential, although this conclusion is chal-
lenged by some authors from a discussion of heavy meson
spectra. Now assuming the confining potential is a relativis-
tic scalar, we know from lattice QCD that in its static form
it is proportional to the distance r between the quarks. Such
a potential for the relativistic two body problem has two con-
sequences. Firstly as shown by Eguchi (1975), and also by
Johnson and Thorn (1976), for high rotational excitation the
three-quark system tends to a quark-diquark two body sys-



tem. Secondly, the squared mass of the two body system
with a linear potential becomes proportional to the angular
momentum J of the system. The first property tells us that
the excited baryon can be treated as a two body q−D system
(D = qq), just like the meson which is a q− q̄ sytem. Now,
both D and q̄ are in the 3̄ color representation, so that the
q−D potential is the same as the q−q̄ potential provided we
neglect the spin dependence of the forces. The short range
force, due to a gluon exchange, is obtained from a vector
Coulomb-like potential and is spin dependent. But for high
excitation the two constituents have a large separation and
the spin-independent confining force takes over, resulting in
the approximate equivalence of the Hamiltonian for the q− q̄
and q−D systems. The slope of the mother Regge trajectory
depends only on the parameter of the confining potential, re-
sulting in parallel linear Regge trajectories for baryons and
mesons. The Hamiltonian is also approximately invariant un-
der the transformation of q̄ into D, which is a supersymmetry
transformation belonging to the supergroup SU(6/21) for the



low lying hadrons.
The string approximation to QCD gives therefore a new type
of mass formula

m2 = α
′−1

J + C = α
′−1

(J − J0) (60)

valid for both baryons and mesons. Here, the Regge slope α
′

is of the order of 1(GeV )−2. This expression gives

∆m2 = α
′−1

∆J (61)

as for ∆J = 1 we obtain

∆m2 = α
′−1

(62)

both for baryons and mesons. Now since α
′

is the same for
the π and ρ trajectories. It is also the same for N and ∆
trajectories, giving

m∆
2 −mN

2 = mρ
2 −mπ

2. (63)



which is the same as Miyazawa’s sum rule obtained from
supersymmetry. Here the relation is also valid for any two
pairs of points on the same trajectories provided ∆J is unity.
In short Miyazawa hadronic supersymmetry for the low lying
hadrons is extended through QCD to the rotationally excited
hadronic levels.
Breaking of this supersymmetry has two origins. First the q
and qq mass differences as well as mass differences among
quarks. This results in different values of the constant J0 in
Eq.(??), leading to different intercepts for parallel Regge tra-
jectories. The second breaking comes from the contribution
to the potential from one gluon exchange. This potential is
a 4-vector and is spin dependent. Since the quark and anti-
quark have s = 1

2 and the diquark has s = 0 or 1, the spin
dependent part of the q− qq potential is different from that
of q − q̄, causing supersymmetry breaking. Another conse-
quence is the deviation of the Regge trajectories from linearity
for low spin, since the potential is no longer proportional to
the distance.



Examples of effective Hamiltonians obtained from a two body
Schrödinger-Dirac approximation to the quark-QCD system
after elimination of the gluon degrees of freedom will not be
presented here due to time limitation. They also exhibit an
approximate SU(6) symmetry and SU(6/21) supersymmetry
with explicit symmetry-breaking terms.
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