DARK MATTER MINI HALOS FROM PRIMORDIAL MAGNETIC FIELDS Phys. Rev. Lett. 131, 231002

Pranjal Ralegankar

Postdoctoral scientist, SISSA

Image source: Pauline Voß for Quanta Magazine

PRIMORDIAL MAGNETIC FIELDS ENHANCE DENSITY PERTURBATIONS

PRIMORDIAL MAGNETIC FIELDS ENHANCE DENSITY PERTURBATIONS

PRIMORDIAL MAGNETIC FIELDS ENHANCE DENSITY PERTURBATIONS

PRIMORDIAL MAGNETIC FIELDS ENHANCE POWER SPECTRUM ON SMALL SCALES

BACKREACTION FROM BARYONS SUPPRESSES BARYON DENSITY PERTURBATIONS BELOW MAGNETIC DAMPING (JEANS) SCALE

EARLIER WORKS FOCUSED ON SCALES BELOW MAGNETIC DAMPING (JEANS) SCALE

Pranjal Ralegankar 7

MY STUDY FOCUSES ON SCALES BELOW MAGNETIC DAMPING (JEANS) SCALE

FINDING: HIGHLY ENHANCED POWER SPECTRUM BELOW JEANS SCALE

FINDING: BARYON PERTURBATION SUPPRESSED BELOW JEANS SCALE BUT NOT DARK MATTER!

SCALES OF INTEREST: PRE-RECOMBINATION AND SCALES SMALLER THAN PHOTON MFP

SCALES OF INTEREST: PRE-RECOMBINATION AND SCALES SMALLER THAN PHOTON MFP

IDEAL MHD IN PHOTON DRAG REGIME:

IDEAL MHD IN PHOTON DRAG REGIME: LAMINAR FLOW IN BARYONS

$$\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b + \frac{(\vec{v}_b \cdot \nabla)\vec{v}_b}{a} = \frac{(\nabla \times \vec{B}) \times \vec{B}}{4\pi a\rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$$

IDEAL MHD IN PHOTON DRAG REGIME: LAMINAR FLOW IN BARYONS

$$\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a\rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$$

Abel and Jedamzik 2010, Campanelli 2013, Jedamzik and Saveliev 2018

IDEAL MHD IN PHOTON DRAG REGIME: KEY FORCES

IDEAL MHD IN PHOTON DRAG REGIME: LARGE LORENTZ FORCE LIMIT

$$(H+\alpha)\vec{v}_b \approx \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b}$$

IDEAL MHD IN PHOTON DRAG REGIME: LARGE LORENTZ FORCE LIMIT

$$(H + \alpha)\vec{v}_b \approx \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b}$$
$$\frac{\partial (a^2 \vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times a^2 \vec{B})}{a}$$

IDEAL MHD IN PHOTON DRAG REGIME: MAGNETIC DAMPING SCALE

$$(H + \alpha)\vec{v}_b \approx \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a\rho_b}$$
$$\frac{\partial (a^2\vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times a^2\vec{B})}{a}$$

$$P_B(k,t) = P_B(k,t_I)e^{-\frac{k^2}{k_D^2}} \qquad k_D^{-1}(a) \sim \tau v_b$$

Campanelli 2013

IDEAL MHD IN PHOTON DRAG REGIME: MAGNETIC DAMPING SCALE

$$(H + \alpha)\vec{v}_b \approx \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b}$$
$$\frac{\partial \left(a^2 \vec{B}\right)}{\partial t} = \frac{\nabla \times \left(\vec{v}_b \times a^2 \vec{B}\right)}{a}$$

$$P_B(k,t) = P_B(k,t_I)e^{-\frac{k^2}{k_D^2}}$$

$$k_D^{-1}(a) \sim \tau v_b$$

Campanelli 2013

IDEAL MHD IN PHOTON DRAG REGIME: DAMPING SCALE GROWS WITH TIME

IDEAL MHD IN PHOTON DRAG REGIME: DAMPING SCALE GROWS WITH TIME

SOLVING DENSITY PERTURBATION EQUATIONS

$$L_{B} = \frac{(\nabla \times B) \times B}{4\pi a \rho_{b}}$$

$$\frac{\partial \vec{v}_{b}}{\partial t} + (H + \alpha) \vec{v}_{b} = L_{B} - \frac{c_{b}^{2} \nabla \delta_{b}}{a} - \frac{\nabla \phi}{a}$$

$$\frac{\partial \delta_{b}}{\partial t} = -\frac{\nabla \cdot \vec{v}_{b}}{a}$$

$$\nabla^{2} \phi = \frac{a^{2}}{2M_{Pl}^{2}} (\rho_{b} \delta_{b} + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^{2} \delta_{DM}}{\partial a^{2}} + \left[\frac{\partial \ln(a^{2}H)}{\partial \ln a} + 1\right] \frac{\partial \delta_{DM}}{a \partial a} = \frac{\nabla^{2} \phi}{(a^{2}H)^{2}}$$

 $(\overline{n}, \overline{n}) \cup \overline{n}$

SOLVING DENSITY PERTURBATION EQUIPERION

$$L_{B} = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_{b}}$$

$$\frac{\partial \vec{v}_{b}}{\partial t} + (H + \alpha) \vec{v}_{b} = L_{B} - \frac{c_{b}^{2} \nabla \delta_{b}}{a} - \frac{\nabla \phi}{a}$$

$$\frac{\partial \delta_{b}}{\partial t} = -\frac{\nabla \cdot \vec{v}_{b}}{a}$$

$$\nabla^{2} \phi = \frac{a^{2}}{2M_{Pl}^{2}} (\rho_{b} \delta_{b} + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^{2} \delta_{DM}}{\partial a^{2}} + \left[\frac{\partial \ln(a^{2}H)}{\partial \ln a} + 1\right] \frac{\partial \delta_{DM}}{a \partial a} =$$

PERTURBATION EVOLUTION PLOT

PERTURBATION EVOLUTION PLOT

LORENTZ FORCE ENHANCES BARYON PERTURBATIONS FOR MODES OUTSIDE k_D^{-1}

BARYON PERTURBATIONS ASYMPTOTE ONCE MODE ENTERS k_D^{-1}

BARYON PERTURBATIONS DAMPED BY THERMAL PRESSURE

BARYON PERTURBATIONS DAMPED BY TURBULENCE AT RECOMBINATION

DARK MATTER PERTURBATIONS CONTINUES TO GROW!

DARK MATTER PERTURBATIONS ENHANCED BY ORDERS OF MAGNITUDE COMPARED TO ACDM

COMPARING WITH SIMULATIONS: ANALYTICAL NOT THAT BAD

CONSTRAINTS ON PMF

EVOLUTION OF EARLY UNIVERSE PMFS

RELEVANCE OF DARK MATTER MINIHALO GENERATION

PARAMETER SPACE WITH ENHANCED POWER ON SMALL SCALES

Subscript Irefers to the time at the beginning of laminar flow regime

PARAMETER SPACE WITH ENHANCED POWER ON SMALL SCALES: THEIA SKA SENSITIVITY

regime

PARAMETER SPACE WITH ENHANCED POWER ON SMALL SCALES: PTA SENSITIVITY

Subscript I

time at the

regime

MINIHALOS FROM CAUSALLY GENERATED PMFS

MINIHALOS FROM CAUSALLY GENERATED PMFS

PMFS TO EXPLAIN COSMIC VOID OBSERVATIONS

Assuming Batchelor spectrum!

UNIVERSE MAYBE FILLED WITH DARK MATTER MINIHALOS!!

Assuming Batchelor spectrum!

SUMMARY AND CONCLUDING REMARKS

- Magnetic fields can enhance power dark matter power spectrum below magnetic Jeans scale.
- PTA/GAIA detection of DM minihalos can provide best probe of primordial magnetic fields
- Results are qualitative: Need MHD simulations to get accurate quantitative answers.
- Ironic: how invisible dark matter can help look for visible entity: magnetic fields

PROBLEM WITH LORENTZ FORCE IN MY LATTICE

INITIALIZING STOCHASTIC PMFS ON LATTICE

LORENTZ FORCE POWER SPECTRUM DOESN'T AGREE WITH THEORY

THE SUPPRESSION OF POWER IS ALSO SEEN IN AREPO (PRELIMINARY!!)

BACKUP SLIDES

COMPARING WITH FULL MHD SIMULATIONS

COMPARING WITH SIMULATIONS: SENSITIVE TO INITIAL POWER SPECTRUM

COMPARING WITH SIMULATIONS: SENSITIVE TO INITIAL POWER SPECTRUM

P_B(k)

MORE PERTURBATION PLOTS

MORE PERTURBATION PLOTS

$$B_0 = 8$$
nG
 $k_I = 10^4 \ Mpc^{-1}$

