Magnetic fields in galaxy CUSIERS

Paola Domínguez Fernández

COLLABORATORS: M. BRÜGGEN, F. VAZZA, G. BRUNETTI, S. MTCHEDLIDZE, A. BRANDENBURG, T. KAHNIASHVILLI, K. RAJPUROHIT, D. RYU, H. KANG, J. ZUHONE, M. HOEFT, W. BARRAGAN-BANDA, D. WITTOR, W. SCHMIDT, A. MIGNONE, D. MUKHERJEE, B. VAIDYA, X. DU

Lausanne | 2024 | P. Domínguez-Fernández

FFL/ITC Fellow

Institute for Theory and Computation

CENTER FOR

ASTROPHYSICS

HARVARD & SMITHSONIAN

Radio diffuse emission in GCs

Radio diffuse emission in GCs

Radio diffuse emission in GCs

Magnetic Fields

- What is their origin?
- How is it possible to get large-scale coherent magnetic fields (tens of kpc) with strengths of μ G values?

Lausanne | 2024 | P. Domínguez-Fernández

Cosmic ray electrons

- What particle acceleration mechanisms can explain observations?
- CRe need to be (re-)accelerated or produced in-situ. What are the sources of seed electrons?

I. MAGNETIC FIELDS

Origin of magnetic fields

Primordial

Top-down scenario

Lausanne | 2024 | P. Domínguez-Fernández

Credit: Wise et al. 2019

Astrophysical

Bottom-up scenario

Astrophysical scenario

Magnetic flux transport from sources (e.g. AGN, SNe)

Credit: Timmerman; LOFAR & HST

- Battery mechanisms (e.g. Biermann battery, Harrison mechanism)
- Plasma instabilities (e.g. Weibel instability)

Lausanne | 2024 | P. Domínguez-Fernández

Reionization and Galaxies

Credit: Wise et al. 2019

Astrophysical

Simulating magnetic fields

Lausanne | 2024 | P. Domínguez-Fernández

Galaxy clusters: $B \sim a \text{ few } \mu G$ Filaments: $B \sim 10 \text{ nG}$ Void regions: $B \gtrsim 10^{-16} \,\mathrm{G}$

<u>ש</u>

et

[Vazza

Cosmological simulations

I) Initial magnetic conditions

II) Modifications to the initial matter PS

Lausanne | 2024 | P. Domínguez-Fernández

Galaxy clusters: $B \sim a \text{ few } \mu G$ Filaments: $B \sim 10 \text{ nG}$ Void regions: $B \gtrsim 10^{-16} \,\mathrm{G}$

g

et

Vazza

Cosmological simulations

- I) Initial magnetic conditions
- II) Modifications to the initial matter PS

Lausanne | 2024 | P. Domínguez-Fernández

Galaxy clusters: $B \sim a \text{ few } \mu G$ Filaments: $B \sim 10 \text{ nG}$ Void regions: $B \gtrsim 10^{-16} \, {\rm G}$

g

et

Vazza

MFs in galaxy clusters:

- Adiabatic compression
- II) Turbulent amplification

Cosmological MHD zoom-in simulations

- Formation of a massive GC: $\sim 10^{15} \,\mathrm{M_{\odot}}$
- Primordial seed: 0.1 nG (comoving)
- Turbulence amplification of $\gtrsim 10^4$
- Evidence of small-scale dynamo amplification

Primordial uniform seed fields

Correlation with the cluster's mass

Primordial uniform seed fields

Correlation with the cluster's mass

Primordial non-uniform seeds

Primordial non-uniform seeds

Inflationary

Inflationary models:

- Tangling of the large-scale field (larger magnetic amplification)
- Reaching $\sim \mu G$ values and ~ 300 kpc correlation length
- Phase transitional models:
 - Reaching ~0.1 μ G values at the center and ~200 kpc correlation length

Lausanne | 2024 | P. Domínguez-Fernández

Small-k slope

Primordial non-uniform seeds

Inflationary

Uniform

Potential RM differences

only for $r > r_{200}$

Lausanne | 2024 | P. Domínguez-Fernández

Inflationary **Stochastic**

edlic

ţ

Lausanne | 2024 | P. Domínguez-Fernández

II. COSMIC RAY ELECTRONS

Towards the outskirts of GCs

- Understanding the outskirts with
- Radio relics:
 - Diffusive shock acceleration
- Mega-radio halos (emission beyond) that of common halos):
 - Turbulent (re)-acceleration
- Acceleration in-situ: fossil electrons (from AGN?)

Characteristics of radio relics

Lausanne | 2024 | P. Domínguez-Fernández

downstream

with the shock normal

towards the downstream

Diffusive shock acceleration (Fermil)

Lausanne | 2024 | P. Domínguez-Fernández

- Magnetic turbulence can scatter and deflect charged particles
- Each encounter with the shock yields an average gain of energy

•
$$\Delta p \sim p - \frac{u}{v}$$

 After many crossings, the particle is accelerated up to CR energies

•
$$N(E) dE = N_0 E^{-q} dE$$

Related to the Mach number $\mathcal{M} = v/c_{s}$

Towards the outskirts of GCs: Relics

- Pre-shock turbulence naturally induces substructure in the synchrotron emission
- Mach number distribution (& obliquity) and type of turbulence define the substructure

(N	
(\supset	
(N	
(
Ì	1	
2		
(. V	
	g	
	<u> </u>	
	Ð	
	N	
	Ð	
1	Ο	
	Č	
	J	
	<u> </u>	
_	D	
l,		
	Ι.	
	Ņ	
	U	
	Ο	
	Č	
-		
	E	
	0	
\bigcap		
the second se		

Towards the outskirts of GCs: Relics

• Polarization studies: Injection scales ≥ 130 kpc needed

Lausanne | 2024 | P. Domínguez-Fernández

Polarization E-vectors

Various turbulent models could help us constrain MFs' characteristics in the

Towards the outskirts of GCs: Relics

Fresh-injection model vs re-acceleration

1.5 GHz

• Studies of radio surface variations: $\delta_{S_{\nu}} = S_{\nu}/\bar{S_{\nu}} - 1$

Fresh-injection model vs re-acceleration

1.5 GHz

Fresh-injection model vs re-acceleration

Lausanne | 2024 | P. Domínguez-Fernández

- The relative radio surface brightness variations, $\delta_{S_{\nu}} = S_{\nu}/\bar{S}_{\nu} - 1$:
 - Increase with frequency
 - Increase with lowering the mean Mach number of the shock

Fresh injection model

Too patchy substructures, specially at low Mach number shocks

Simple DSA with thermal electrons cannot explain $\mathcal{M} \sim 2$ shocks

Fossil electrons needed?

- Main cluster's mass: $6 \times 10^{14} \,\mathrm{M_{\odot}}$
- Varying:
 - Impact parameter
 - Initial jet direction
 - Mass ratios: R=1:2, 1:5

•
$$M_{BH} = 6.7 \times 10^8 M_{\odot}$$

• $P_{jet} = 3 \times 10^{45} \text{ erg s}^{-1}$
• $\rho_{jet} = 1.51 \times 10^{-28} \text{ g cm}^{-3}$
• $\beta_{jet} = P_{th}/P_B = 1$

Lausanne | 2024 | P. Domínguez-Fernández

AGN bubbles in a cluster environment

[Weinberger et al. 2017]

Energy injection:

Magnetic **Kinetic**

Jet onset time

[Domínguez-Fernández, ZuHone et al. in prep.]

Jet onset time

Lausanne | 2024 | P. Domínguez-Fernández

- AGN bubbles easily permeate a Mpc region of GCs in a few Gyr after ignition
- Possible explanation for:
 - Radio halos? Yes, but turbulence reacceleration is needed (coming up)
 - Radio relics?
 - No if only central AGN bubbles (contribution of ~1/3 LLS)
 - Yes if there's contribution from other offcenter radio galaxies

Lausanne | 2024 | P. Domínguez-Fernández

CR Pressure [dyn/cm²]

in prep.] σ 00

Take away messages

Primordial MFs

• They can explain the magnetization of galaxy clusters Inflationary models seem to be favored (larger MF strength and coherent scales) BUT these simulations cannot definitely rule out phase-transitionallike fields

Radio diffuse emission

Lausanne | 2024 | P. Domínguez-Fernández

Radio relics could be good tracers for outskirts MFs specially in polarization Fossil electrons seem to be a viable option for explaining radio halos and smooth radio relics BUT additional contribution from off-center radio sources is probably needed

Future with radio observations

- Outskirts and radio bridges BUT the emission seems to be also linked to some turbulent acceleration mechanism
- More studies with stacking cluster pairs and filaments
- More extragalactic RM studies

pdominguezfernandez@cfa.harvard.edu

Aurorae in Cambridge!

Lausanne | 2024 | P. Domínguez-Fernández

pdominguezfernandez@cfa.harvard.edu

