Scenarios of inflationary magnetogenesis

Lorenzo Sorbo

Generation, evolution, and observations of cosmological magnetic fields Bernoulli Center, April 29, 2024

Cosmological magnetic fields

Observed with a number of techniques

• In the Galaxy (~kpc), solid evidence of $B \cong \mu G$.

[From dynamo amplification of primordial 10-21÷-23 G @ Mpc scale]

• At cosmological scales (~1 Mpc), blazars: $B \approx 10^{-17}$ G [x(L/1 Mpc)^{1/2} for L < 1 Mpc]

Pro: possible to create large coherence lengths Con: must modify standard model

$$\mathcal{S}_{\text{Maxwell}} = \int d^4 \mathbf{x} \sqrt{g} \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right) = \int d^4 \mathbf{x} \left(\frac{1}{2} A'_i A'_i - \frac{1}{2} \partial_a A_i \partial_a A_i \right)$$

where

 $g_{\mu\nu} = a^2(\tau) \left(-d\tau^2 + d\mathbf{x}^2 \right)$ conformally flat Universe $A_0 = 0, \ \partial_i A_i = 0$ Coulomb gauge (assumed throughout)

Maxwell on conformally flat space-time = free theory on Minkowski

 \Rightarrow no effects from inflation

Turner, Widrow 87 Calzetta, Kandus Mazzitelli 97

One idea: light charged scalar ϕ with mass m < Hgets fluctuations during inflation

Electric currents

Magnetic field

... but unfortunately...

...but unfortunately...

Giovannini, Shaposhnikov 00

•••

Very red spectrum of magnetic field (currents are slow at large scale) $B \propto \frac{H^{5/2}}{m^{3/2} M_P} \frac{1}{\ell^2}$

(e.g., *B*=10⁻⁴⁵ G @ 1 Mpc for *H*=10¹² GeV, *m*=100 GeV)

Actually, there **is** a standard mechanism Maroto 00 of amplification:

•••

Metric perturbations during inflation break conformal invariance!

...but perturbations freeze at super-Hubble scales

> Blue spectrum again, and very weak fields

Let us try to modify the gauge-invariant Lagrangian for electromagnetism, then!

Ratra magnetogenesis
$$S_{\text{Ratra}} = \int d^4 \mathbf{x} \sqrt{g} \left(-\frac{f(\phi)^2}{4} F_{\mu\nu} F^{\mu\nu} \right) = \int d^4 \mathbf{x} f(\phi)^2 \left(\frac{1}{2} A'_i A'_i - \frac{1}{2} \partial_a A_i \partial_a A_i \right)$$

 $f(\phi)$ through $\phi(\tau)$ gives $f(\tau)$ modeled as $f(\tau) = (-H \tau)^{-n}$

n < 0 to avoid strong coupling (charge of electron $\sim f^{-1}$) Demozzi et al 09

Canonically normalized field

$$\tilde{A}_i = f A_i$$

 $\tilde{A}_{i}^{\prime\prime} + \left(k^{2} - \begin{pmatrix} n\left(n+1\right) \\ \tau^{2} \end{pmatrix} \right) \tilde{A}_{i} = 0$ amplification at large scales

will assume inflation with H constant and a=1 at end of inflation

Ratra magnetogenesisAt end of inflation
$$B(\ell) \simeq H^2 \left(\frac{H^{-1}}{\ell}\right)^{n+3}$$
 (scale invariant for $n=-3$) $n=-3, H\sim 10^{12} \text{ GeV} \Rightarrow B\sim 10^{-12} \text{ G}$ at all scales (padd)...however...electric field: $E(\ell) \simeq H^2 \left(\frac{H^{-1}}{\ell}\right)^{n+2}$ (IR-divergent for $n=-3$!)Backreaction from electric energy avoided for $n>-2$ $\Rightarrow B< 10^{-32} \text{ G}$ at 1 Mpc \bigcirc Demozzi et al 09

Ratra magnetogenesis: ways out?

Ferreira, Jain, Sloth 13, 14

Difficult...

Assume:

- ✓ Ratra active only after 1 Mpc scales leave the horizon
 ✓ n=-2+...
- \sim Low scale inflation $\varrho^{1/4} \sim 10 MeV$

Axion magnetogenesis

$$S_{Axion} = \int d^{4}\mathbf{x}\sqrt{g} \left(-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \begin{pmatrix}\phi\\4f\\F\mu\nu\tilde{F}^{\mu\nu}\end{pmatrix}\right)$$
by parts

$$= \frac{\dot{\phi}}{2f}\epsilon_{ijk}A_{i}\partial_{j}A_{k}$$
Sonvenient to decompose
photon in helicity modes

$$\mathbf{A}(\mathbf{x}, \tau) = \sum_{\lambda=\pm} \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3/2}} \left[a_{\mathbf{k}}^{\lambda}A_{\lambda}^{k}(\tau) \mathbf{e}^{\lambda}(\mathbf{k})e^{i\mathbf{k}\cdot\mathbf{x}} + a_{\mathbf{k}}^{\lambda\dagger}A_{\lambda}^{\kappa}(\tau) \mathbf{e}^{\lambda*}(\mathbf{k})e^{-i\mathbf{k}\cdot\mathbf{x}}\right]$$

Axion magnetogenesis

Equation for mode functions:

$$A_{\lambda}^{\prime\prime} + \left(\mathbf{k}^2 + \lambda \,\frac{\phi'}{f} \,|\mathbf{k}|\right) \,A_{\lambda} = 0$$

for $\lambda = -$, the "mass term" is negative and large for ~ 1 Hubble time

Exponential amplification of <u>left handed modes only</u>! parity violation! $I_{L} \propto \exp\left\{\frac{\pi}{2} \frac{\dot{\phi}}{fH}\right\}$

Axion magnetogenesis

Magnetic spectrum at end of inflation

$$B(\ell) \simeq H^2 e^{\pi\xi} \left(\frac{H^{-1}}{\ell}\right)^2$$

overall amplitude tunable

very blue spectrum

Carroll Field Garretson 92

however.

 $\xi \equiv \frac{\phi}{2 f H}$

If ξ chosen to saturate no backreaction condition $(B^2 < H^2 M_P^2)$ then B too small @ Mpc scales

Evolving the field in the cosmic plasma

The magnetic field produced has maximal helicity

parity-violating background

generated by

$${\cal H}\equiv\int_V d^3x\,{f B}\cdot{f A}$$

and helicity is (almost) conserved for large conductivities

$$\frac{d\mathcal{H}}{dt} = -\frac{1}{4\pi\sigma} \int_{V} d^{3}x \mathbf{B} \cdot (\nabla \times \mathbf{B}) \cong \mathbf{0}$$

Dissipative processes suppress power at small scales

In order to conserve helicity, power has to go to larger scales:

Inverse cascade

Son 99 Field and Carroll 00 Vachaspati 01, Sigl 02...

Numerical solutions

Evolution of the comoving magnetic field:

From Jedamzik and Banerjee 2004

Scalings:

- Coherence length $\propto \tau^{2/3}$
- Magnetic field strength $\propto \tau^{-1/3}$

$$B_0^2 L_0 = B_{\rm rh}^2 L_{\rm rh} \left(\frac{a_{\rm rh}}{a_0}\right)^3$$

Spectral index for scales>coherence length: constant

(property of self-similarity)

In practice the story is more complicated...

From Jedamzik and Banerjee 2004

In practice the story is more complicated...

... but the final result is simple:

(assuming instantaneous reheating)

Coherence length grows: $L = L_0 \frac{T_{RH}}{T_{rec}} \left(1 + \frac{B_0}{T_{RH}^2} \frac{1}{L_0 H_{RH}} \frac{T_{RH}}{T_{rec}}\right)^{2/3}$ (physical) Magnetic field decreases: $B = B_0 \frac{T_{rec}^2}{T_{PH}^2} \left(1 + \frac{B_0}{T_{PH}^2} \frac{1}{L_0 H_{RH}} \frac{T_{RH}}{T_{rec}}\right)^{-1/3}$

with $T_{rec}=0.3 \ eV$, temperature at recombination

simplifies to

$$\frac{B}{L} = \frac{T_{rec}^4}{M_P} \simeq 10^{-8} \frac{G}{Mpc} \qquad B^2 L = B_{RH}^2 L_{RH} \left(\frac{T_{rec}}{T_{RH}}\right)^3$$

(assuming instantaneous reheating)

Coherence length grows: $L = L_0 \frac{T_{RH}}{T_{rec}} \left(1 + \frac{B_0}{T_{RH}^2} \frac{1}{L_0 H_{RH}} \frac{T_{RH}}{T_{rec}}\right)^{2/3}$ (physical) Magnetic field decreases: $B = B_0 \frac{T_{rec}^2}{T_{PH}^2} \left(1 + \frac{B_0}{T_{PH}^2} \frac{1}{L_0 H_{PH}} \frac{T_{RH}}{T_{rec}}\right)^{-1/3}$

with $T_{rec}=0.3 \ eV$, temperature at recombination

Anber, LS 2006

Can obtain $10^{-17} G @ 1 Mpc$ with $\xi \sim 16 \implies$ scale of inflation $\varrho^{1/4} \sim 10^{10} GeV$

... but unfortunately...

Constraints from nongaussianities

The produced electromagnetic modes infect the inflaton perturbations through the coupling $\phi F\tilde{F}$, contributing to its three-point function

Barnaby Peloso 10

Axion model

ruled out

NONGAUSSIANITIES

 $f_{NL}^{\text{equil}} \simeq 8.9 \times 10^4 \, \frac{H^6}{\epsilon^3 \, M_P^6} \frac{e^{6 \, \pi \, \xi}}{\xi^9}$

Planck constrains $|f_{NL}^{equil}| < 50$

ξ<2.2

The Lagrangian $\mathcal{L} = f(\tau)^2 \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{\gamma}{8} \epsilon_{\mu\nu\rho\lambda} F^{\mu\nu} F^{\rho\lambda} \right)$

 $f(\tau)$ from $f(\sigma)$ through $\sigma(\tau)$ modeled as $f(\tau) = (-H\tau)^{-n}$

n < 0 to avoid strong coupling $\gamma \equiv -\xi/n$ an O(10) constant

A model

Supergravity Lagrangian for U(1) gauge field

$$\mathcal{L} = -\frac{1}{4} \operatorname{Re} \{f\} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} \operatorname{Im} \{f\} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

f=gauge kinetic function, assume f(X, Y) = XYwith everything but $Re{X}$ stabilized to

 $\operatorname{Re}\{Y\} = Y_0, \quad \operatorname{Im}\{Y\} = \gamma Y_0, \quad \operatorname{Im}\{X\} = 0$

then: $\mathcal{L} = X_R Y_0 \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{\gamma}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} \right)$

$\tilde{A}_{+}(k, \tau) = \frac{1}{\sqrt{2 k}} (G_{-n-1}(\xi, -k \tau) + i F_{-n-1}(\xi, -k \tau)) \qquad \tilde{A}_{-} \sim 0$ Coulomb wave functions

At large scales

Subsequent evolution:

Assume instantaneous reheating Assume inverse cascade until recombination

$$B_0 \simeq 10^{-8} \,\mathrm{G} \,\left(\frac{L_0}{\mathrm{Mpc}}\right) \qquad B_0^2 \,L_0 = B_{\mathrm{rh}}^2 \,L_{\mathrm{rh}} \,\left(\frac{a_{\mathrm{rh}}}{a_0}\right)^3$$
with

$$B_{\rm rh}^2 = H^4 \frac{e^{2\pi\xi}}{\xi^5} \frac{\Gamma(4-2n)\Gamma(6+2n)}{2^8 \times 3^2 \times 5 \times 7 \times \pi^3}$$
$$L_{\rm rh} = \frac{18\pi}{(3-2n)(5+2n)} \frac{\xi}{H}$$

Constraints on parameter space

n < 0 to avoid strong coupling n > -2 to avoid IR divergence of electric field

will focus on -2<n<0

First constraint: overproduction of GWs by magnetic field during inflation?

Primordial gravitational waves

Tensor components of the metric

$$g_{\mu\nu}(\mathbf{x}, t) dx^{\mu} dx^{\nu} = -dt^2 + a^2(t) \left(\delta_{ij} + h_{ij}(\mathbf{x}, t)\right) dx^i dx^j$$
$$\sum_{ij} \delta^{ij} h_{ij} = \sum_i \partial_i h_{ij} = 0$$

the tensor mode has two components (=helicity ±2) so we can decompose it, in momentum space, into left handed and right handed modes

$$h_{ij}(\mathbf{k}, t) = h_L(\mathbf{k}, t) \,\epsilon_{ij}^L(\mathbf{k}) + h_R(\mathbf{k}, t) \,\epsilon_{ij}^R(\mathbf{k})$$

Generation of (parity violating) gravitational waves by U(1) gauge field during inflation

The energy of the electromagnetic field sources gravitational waves:

RHS is known, so obtain h_{λ} with retarded propagator

The amplitude of the helicity- λ gravitational waves

If $G_k(t,t')$ is retarded propagator for operator d^2/dt^2+3 H $d/dt+k^2/a^2$, then

$$h_{\lambda}(\mathbf{k}, t) = \frac{2}{M_P^2} \int dt' G_k(t, t') T_{\lambda}(\mathbf{k}, t)$$

and from this we obtain the amplitude

$$\langle h_{\lambda}(\mathbf{k}, t) h_{\lambda}(\mathbf{q}, t) \rangle = \frac{4}{M_P^4} \int dt' G_k(t, t') \int dt'' G_q(t, t'') \langle T_{\lambda}(\mathbf{k}, t') T_{\lambda}(\mathbf{q}, t'') \rangle$$

where $\langle T_{\lambda}(\mathbf{k}, t') T_{\lambda}(\mathbf{q}, t'') \rangle$ is quartic in the gauge field Aand can be computed in terms of the functions $A_{\lambda}^{k}(t)$ The amplitude of the helicity- λ gravitational waves

Denoting
$$\langle h_{\lambda}(\mathbf{x}, t) h_{\lambda}(\mathbf{y}, t) \rangle = \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \frac{\mathcal{P}_{\lambda}(\mathbf{k})}{k^{3}} e^{i\mathbf{k}(\mathbf{x}-\mathbf{y})}$$

 $\mathcal{P}_{\pm}(\mathbf{k}) = \frac{H^{2}}{\pi^{2} M_{P}^{2}} \begin{pmatrix} 1 + f_{\pm}(n) \frac{H^{2}}{M_{P}^{2}} \frac{e^{4\pi\xi}}{\xi^{6}} \end{pmatrix}$ induced by gauge fields standard part parity-violation

 $[f_{-}(n) < < f_{+}(n)]$

Parity violating gravitational waves

Sorbo 10

A_+ and A_- have different amplitudes

Imposing r < 0.035: upper bound on Q_{inf} as function of *n* for $B = 10^{-16}$, 2.5x10⁻¹⁷, 6x10⁻¹⁸ (1 Mpc/L)^{1/2} G

How about galactic magnetic fields?

Intensity of *B* at *1 Mpc* scales for $B=10^{-16}$, 2.5x10⁻¹⁷, 6x10⁻¹⁸ (1 Mpc/L)^{1/2} G

A second constraint! Ferreira, Sloth 14

Isocurvature perturbations are partially converted into curvature perturbations during inflation

 $\sigma \Longrightarrow A_{\mu} \Longrightarrow \delta \sigma \Longrightarrow \delta \phi$

Nongaussian component in curvature perturbations, strongly constrained by Planck!

A second constraint! Caprini, Guzzetti, Sorbo 17

$$\delta\varphi_{\text{flat}}'' + 2\mathcal{H}\,\delta\varphi_{\text{flat}}' + \left(k^2 + a^2 V_{\varphi\varphi}\right)\,\delta\varphi_{\text{flat}} - \left(\frac{a^2 \,\varphi'^2}{\mathcal{H}}\right)' \frac{\delta\varphi_{\text{flat}}}{M_{pl}^2 a^2} - \left(\frac{a^2 \,\varphi' \,\sigma'}{\mathcal{H}}\right)' \frac{\delta\sigma_{\text{flat}}}{M_{pl}^2 a^2} = 2\varphi_0' \,S^{(3)} + \frac{\varphi_0'}{\mathcal{H}} \,S'^{(3)} + \frac{\varphi_0'}{\mathcal{H}} \,S^{(2)}$$

$$S^{(2)} = -\frac{a^2}{2M_{pl}^2}\rho_{em}(\mathbf{k}) = -\frac{I^2 a^2}{4M_{pl}^2} [E_i * E_i + B_i * B_i]$$

$$S^{(3)} = \frac{a}{2M_{pl}^2} \frac{i\hat{k}_j}{k} q_{emj}(\mathbf{k}) = \frac{I^2 a^2}{2M_{pl}^2} \frac{i\hat{k}_j}{k} \epsilon_{jlm} [E_l * B_m]$$

...computing and computing and computing...

A second constraint!

$$\left\langle \mathcal{R}\left(\mathbf{k}_{1}\right)\mathcal{R}\left(\mathbf{k}_{2}\right)\mathcal{R}\left(\mathbf{k}_{3}\right)\right\rangle =\frac{3}{10}\left(2\pi\right)^{5/2}f_{\mathrm{NL}}^{\mathrm{equil}}\mathcal{P}_{\mathcal{R}}^{2}\delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right)\frac{\sum k_{i}^{3}}{\Pi k_{i}^{3}}$$

 \Rightarrow a limit from f_{NL} on inflationary energy scale (assume $B=10^{-17}$ (1 Mpc/L)^{1/2} G)

...and an induced limit on *r*...

How about galactic magnetic fields?

Intensity of B at 1 Mpc scales for $B=10^{-17} (1 Mpc/L)^{1/2} G$

Comments

- Despite the details, an order of magnitude estimate!
- Magnetic fields would be helical (detectable signature?)
- B < < nG at cosmological scales: no effects in CMB
- Another signature: chiral GWs (hard to see?)

Conclusions

- Inflationary magnetogenesis notoriously difficult problem
- Presented a (not-so-)simple model consistent with observations