
INTRODUCTION TO TDAQ AND ITS
SCALING PRINCIPLES

F.Pastore (Royal Holloway Univ. of London)
francesca.pastore@cern.ch

mailto:francesca.pastore@cern.ch

INTRODUCTION

➡ Aim of this lecture is to introduce the  
basic TDAQ concepts, avoiding as many technological
details as possible

➡ Focus on High Energy Physics
➡ But key concepts are common  

to other areas

2

Credits to A.Negri and W.Vandelli whose
material helped me preparing these slides

OUTLINE

3

➡ Introduction
➡ What is Trigger and DAQ?
➡ Overall TDAQ framework

➡ Basic TDAQ concepts
➡ Digitization, Latency
➡ Deadtime, Busy
➡ De-randomization

➡ Scaling up
➡ Readout and Event Building
➡ Buses vs Network

➡ Fight bottlenecks

OUTLINE

3

➡ Introduction
➡ What is Trigger and DAQ?
➡ Overall TDAQ framework

➡ Basic TDAQ concepts
➡ Digitization, Latency
➡ Deadtime, Busy
➡ De-randomization

➡ Scaling up
➡ Readout and Event Building
➡ Buses vs Network

➡ Fight bottlenecks

OUTLINE

3

➡ Introduction
➡ What is Trigger and DAQ?
➡ Overall TDAQ framework

➡ Basic TDAQ concepts
➡ Digitization, Latency
➡ Deadtime, Busy
➡ De-randomization

➡ Scaling up
➡ Readout and Event Building
➡ Buses vs Network

➡ Fight bottlenecks

WHAT IS DAQ?

➡ Data AcQuisition (DAQ) is
➡ the process of sampling signals that measure real world physical conditions
➡ and converting the resulting samples into digital numeric values that can be

manipulated by a PC
➡ Main role of DAQ in HEP

➡ process the signals generated in a detector
➡ and saving the (interesting) information on a permanent storage

[Wikipedia]

4

THE DATA DELUGE

➡ In many systems, like particle physics or astronomy
experiments, to store all the possibly relevant data provided
by the sensors is UNREALISTIC and often becomes also
UNDESIRABLE

➡ Three approaches are possible:
➡ Reduced amount of data (packing and/or filtering)
➡ Faster data transmission and processing
➡ Both!

Trigger!

5

LINK BETWEEN TRIGGER AND DAQ

Start data acquisitionIdentify the
interesting process

limited by time constraints limited by computing resources

6

Trigger DAQ

Record &
Process data

Computing

Storage

LINK BETWEEN TRIGGER AND DAQ

The constrain between trigger and DAQ rate is the
storage and the offline computing capabilities

Define the maximum allowed rate

Start data acquisitionIdentify the
interesting process

limited by time constraints limited by computing resources

6

Trigger DAQ

Record &
Process data

Computing

Storage

LINK BETWEEN TRIGGER AND DAQ

The constrain between trigger and DAQ rate is the
storage and the offline computing capabilities

Define the maximum allowed rate
Which is the balance between Trigger and DAQ
resources?

Start data acquisitionIdentify the
interesting process

limited by time constraints limited by computing resources

6

Trigger DAQ

Record &
Process data

Computing

Storage

BALANCE BETWEEN TRIGGER AND DAQ

DAQ

Record &
Process data

7

Computing

If the trigger is highly selective, one can reduce the size of the dataflow

storage

Trigger

Large selectivity

detector data

Storage

BALANCE BETWEEN TRIGGER AND DAQ

DAQ

Record &
Process data

7

Computing

If the trigger is highly selective, one can reduce the size of the dataflow

storage

Trigger

Large selectivity

detector data

If the selectivity of the trigger is not enough, due to large irreducible
background, a large data flow (and data compression) is needed

Trigg
er

Large dataflow &
compression

DAQdetector data

Storage

TWO OPPOSITE EXAMPLES

LHC – ATLAS	

Project started in 1996
Technology chosen in 2000
Start data-taking 2008

Full p-p collision rate: 40 MHz
Average event size: 1.5 MB
Full data rate: ~60 PB/s

Defined physics signal
Selective trigger reduces 7 orders of
magnitudes to ~kHz

Affordable DAQ rate: ~GB/s
Data distribution (GRID)

SKA (Square Km Array)	

Project started in 2011
Technologies under evaluation
Start operations in 2028

Radio-photograph the sky continuously
1.12 PB/s of photos collected

EXASCALE system: 1018 operations for
correlation and imaging
Simple correlator : 10 TB/s
Total Internet Traffic ≈ 8 TB/s in 2010

Required large computing power
Big-data and cloud-computing drive market

8

T/DAQ ARCHITECTURE

9

Readout/Event Building

 High
 Level
 Trigger

Storage

M
onitoring &

 C
ontrol &

 C
onfiguration

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger Front End Electronics

DOUBLE PATHS
➡ Trigger path

➡ From dedicated detectors to trigger logic
➡ online selection

➡ Data path
➡ From all the detectors to storage
➡ On positive trigger decision

10

Trigger and DAQ
trigger
path

decisions

Storage
data
path

Trigger

DAQ

trigger decisions

TRIGGER: A REAL-TIME FILTER

➡ Use discriminating features within widely extended systems
➡ Reality is:

➡ The trigger accepts events with features similar to the signal
➡ The final rate is often dominated by not interesting physics

11

TRIGGER DUTIES

12

TRIGGER DUTIES

➡ Either selects interesting events or rejects boring ones, in
real time
➡ Selective: efficient for “signal”  

and resistant to “background”
➡ Simple and robust
➡ Quick

12

TRIGGER DUTIES

➡ Either selects interesting events or rejects boring ones, in
real time
➡ Selective: efficient for “signal”  

and resistant to “background”
➡ Simple and robust
➡ Quick

➡ With minimal controlled latency
➡ time it takes to form and distribute its decision

12

TRIGGER DUTIES

➡ Either selects interesting events or rejects boring ones, in
real time
➡ Selective: efficient for “signal”  

and resistant to “background”
➡ Simple and robust
➡ Quick

➡ With minimal controlled latency
➡ time it takes to form and distribute its decision

➡ Generates a prompt signal used to start the data-
acquisition processes
➡ To be distributed to front end electronics

12

TRIGGER DUTIES

➡ Either selects interesting events or rejects boring ones, in
real time
➡ Selective: efficient for “signal”  

and resistant to “background”
➡ Simple and robust
➡ Quick

➡ With minimal controlled latency
➡ time it takes to form and distribute its decision

➡ Generates a prompt signal used to start the data-
acquisition processes
➡ To be distributed to front end electronics

➡ Trigger and Front-End electronics have common design
➡ Data compression and formatting
➡ Monitor and automatic fault detection

12

THE FIRST TRIGGER

●"Method of Registering Multiple Simultaneous Impulses of
Several Geiger Counters"  
 Bruno Rossi, Nature 1930
– Online coincidence of three signals

13

Geiger counters
Primary particle

Secondary particle

Astronomia e Fisica a Firenze: dalla Specola ad Arcetri, Firenze Universiry Press, 2017

CHOOSE YOUR HARDWARE TRIGGER
Modular electronics

Simple algorithms
Low-cost
Intuitive and fast use

Digital integrated systems
Highly complex algorithms
Fast signals processing
Knowledge of digital systems

14

THREE TYPES OF TRIGGER

15

THREE TYPES OF TRIGGER
➡ Global:

➡ an external system identifies the “interesting” event, all the readout data is
collected for that event identifier

15

THREE TYPES OF TRIGGER
➡ Global:

➡ an external system identifies the “interesting” event, all the readout data is
collected for that event identifier

➡ Local:
➡ local trigger decision to readout data on the local front-end modules, readout

collects fragments corresponding to that trigger

15

THREE TYPES OF TRIGGER
➡ Global:

➡ an external system identifies the “interesting” event, all the readout data is
collected for that event identifier

➡ Local:
➡ local trigger decision to readout data on the local front-end modules, readout

collects fragments corresponding to that trigger
➡ Continuous readout:

➡ front-end sends data continuously to the readout, at a fixed rate, regardless the
data content. Data size and rate are constant in size. Readout cannot group
fragments relative to an event

15

not really a photo,
almost a movie

THREE TYPES OF TRIGGER
➡ use cases:

➡ Colliders: normally use global trigger: if something interesting has been
seen somewhere, take all the data corresponding to that bunch crossing

➡ Large distributed telescopes: often use local trigger: readout data for
the portions of the detector that have seen something

➡ Very slow detectors: sometimes use continuous readout: sample the
analogue signals at a fixed rate and let the downstream DAQ decide
whether there were any interesting signals

16

not really a photo,
almost a movie

T/DAQ ARCHITECTURE

17

 High
 Level
 Trigger

Storage

M
onitoring &

 C
ontrol &

 C
onfiguration

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger Front End Electronics

Readout/Event Building

D
ataflow

DAQ DUTIES

➡ Gather data produced by detectors
➡ Readout

➡ Form complete events
➡ Data Collection and Event Building

➡ Possibly feed other trigger levels
➡ High Level Trigger

➡ Store event data
➡ Data Logging

➡ Manage the operations
➡ Run Control, Configuration, Monitoring

18

Data Flow

T/DAQ ARCHITECTURE

19

 High
 Level
 Trigger

Storage

M
onitoring &

 C
ontrol &

 C
onfiguration

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger Front End Electronics

Readout/Event Building

READOUT BOARDS (COUNTING ROOM)

20
➡ Intermediate crates off-detector to separate FE (long duration) and PCs

READOUT

21

➡ Signal processing, data formatting, parallelizable tasks (pattern
recognition), machine learning, ...
➡ FPGAs are becoming the bread&butter of TDAQ

➡ High-speed serial links, electrical and optical, depending on distance
➡ Low-power LVDS, 400 Mbps, < 10m
➡ Optical GHz-links for longer distances (up to 100 m)

➡ High density backplanes for data exchanges in crates
➡ High pin count, with point-to-point connections up to 160 Mbit/s
➡ Large boards preferred

T/DAQ ARCHITECTURE

22

 High
 Level
 Trigger

Storage

M
onitoring &

 C
ontrol &

 C
onfiguration

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger Front End Electronics

Readout/Event Building

EVENT BUILDING
➡ Collects data from Front-End and

associate fragments corresponding to
➡ the same event, e.g. same bunch crossing
➡ the same accelerator orbit
➡ the same time frame

➡ Data must be marked with time-stamp
➡ Work done with: a distribution system

(networks) and processing units (switch/
PCs/custom board)
➡ Can be incremental on multiple networks
➡ Or a separate network for data collection

➡ Usually adopt the farm architecture
➡ assign one event per processor (node)
➡ larger latency, but scalable

➡ Network has intrinsic latency, so traffic
control is critical
➡ can have one network only for traffic control

23

FARM (@SURFACE)

24

T/DAQ ARCHITECTURE

25

Storage

M
onitoring &

 C
ontrol &

 C
onfiguration

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger Front End Electronics

Readout/Event Building

 High
 Level
 Trigger

HLT TRENDS: COMBINED TECHNOLOGY

The right choice can be combining the best of both worlds by
analysing which strengths of FPGA, GPU and CPU best fit the
different demands of the application.

26

NVIDIA GPUS: 	
3.5 B TRANSISTORS

VIRTEX-7 FPGA: 	
6.8 B TRANSISTORS

T/DAQ ARCHITECTURE

27

Storage

M
onitoring &

 C
ontrol &

 C
onfiguration

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger Front End Electronics

Readout/Event Building

 High
 Level
 Trigger

EVENT BUILDING AND STORAGE

➡ Storage device technologies gaining importance in HEP
➡ Storage data rate increasing with luminosity
➡ Distributed file systems being used as data-flow frameworks

➡ CMS, ATLAS run 4 (?), …
➡ Also use large temporary buffers with high rate access

➡ LHCb: 40 PB (3000 hard-disks) enough for days
➡ SSD faster but have short lifetime wrt

high read-write rate, so prefer hard-disks

28

T/DAQ ARCHITECTURE

29

Storage

M
onitoring &

 C
ontrol &

 C
onfiguration

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger Front End Electronics

Readout/Event Building

 High
 Level
 Trigger

T/DAQ ARCHITECTURE

30

Front End Electronics

Readout/Event Building

 High
 Level
 Trigger

Storage

Trigger

M
onitoring &

 C
ontrol &

 C
onfiguration

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

THE GLUE OF YOUR EXPERIMENT

➡ Configuration
➡ data taking or test?

➡ Control
➡ Orchestrate applications  

participating to data taking
➡ Via distributed  

Finite State Machine
➡ Monitoring

➡ What is going on?
➡ What happened?
➡ When? Where?

31

OUTLINE

➡ Introduction
➡ What is Trigger and DAQ?
➡ Overall TDAQ framework

➡ Basic TDAQ concepts
➡ Digitization, Latency
➡ Deadtime, Busy
➡ De-randomization

➡ Scaling up
➡ Readout and Event Building
➡ Buses vs Network

32

Via a toy model

BASIC DAQ: PERIODIC TRIGGER

➡ Eg: measure temperature at a fixed frequency
➡ Clock trigger

➡ ADC performs analog to digital conversion, digitization
(on front-end electronics)
➡ Encoding analog value into binary representation

➡ CPU does
➡ Readout, Processing, Storage

33

ADC CardT sensor CPU
 Physical View

disk

BASIC DAQ: PERIODIC TRIGGER
➡ System clearly limited by the  

time τ to process an “event”
➡ ADC conversion +  

CPU processing +  
Storage

➡ The DAQ maximum sustainable  
rate is simply the inverse of τ, e.g.:
➡ E.g.: τ = 1 ms ® R = 1/τ = 1 kHz

34

Processing

ADC

disk

τ = 1 m
s

TRIGGER

ADC CardT sensor CPU
 Physical View

disk

BASIC DAQ: “REAL” TRIGGER

➡ Events are asynchronous and
unpredictable
➡ E.g.: beta decay studies

➡ A physics trigger is needed
➡ Discriminator: generates an  

output digital signal if amplitude  
of the input pulse is greater  
than a given threshold

➡ NB: delay introduced  
to compensate for the  
trigger latency
➡ Signal split in trigger and data paths

35

Processing

ADC

disk

start

interrupt

delay

TRIGGER

discriminator

Data path
Trigger path

τ = 1 m
s

BASIC DAQ: “REAL” TRIGGER

➡ Events are asynchronous and
unpredictable
➡ E.g.: beta decay studies

➡ A physics trigger is needed
➡ Discriminator: generates an  

output digital signal if amplitude  
of the input pulse is greater  
than a given threshold

➡ NB: delay introduced  
to compensate for the  
trigger latency
➡ Signal split in trigger and data paths

35

Processing

ADC

disk

start

interrupt

delay

TRIGGER

discriminator

Data path
Trigger path

τ = 1 m
s

BASIC DAQ: “REAL” TRIGGER

➡ Stochastic process
➡ Fluctuations in time between events

➡ Let's assume for example
➡ physics rate f = 1 kHz, i.e. λ = 1 ms
➡ and, as before, τ= 1 ms

36

Processing

ADC

disk

start

interrupt

delay

TRIGGER

discriminator

Data path
Trigger path

τ = 1 m
s

BASIC DAQ: “REAL” TRIGGER

➡ Stochastic process
➡ Fluctuations in time between events

➡ Let's assume for example
➡ physics rate f = 1 kHz, i.e. λ = 1 ms
➡ and, as before, τ= 1 ms

37

Processing

ADC

disk

start

interrupt

delay

TRIGGER

discriminator

Data path
Trigger path

τ = 1 m
s

Probability of time (in ms)
between events for average
decay rate of f=1kHz → λ=1ms

BASIC DAQ: “REAL” TRIGGER

➡ Stochastic process
➡ Fluctuations in time between events

➡ Let's assume for example
➡ physics rate f = 1 kHz, i.e. λ = 1 ms
➡ and, as before, τ= 1 ms

38

Processing

ADC

disk

start

interrupt

delay

TRIGGER

discriminator

Data path
Trigger path

τ = 1 m
s

Probability of time (in ms)
between events for average
decay rate of f=1kHz → λ=1ms

BASIC DAQ: “REAL” TRIGGER

➡ Stochastic process
➡ Fluctuations in time between events

➡ Let's assume for example
➡ physics rate f = 1 kHz, i.e. λ = 1 ms
➡ and, as before, τ= 1 ms

39

Processing

ADC

disk

start

interrupt

delay

TRIGGER

discriminator

Data path
Trigger path

τ = 1 m
s

What if a trigger is
created when the
system is busy?

SYSTEM STILL PROCESSING

➡ If a new trigger arrives when the
system is still processing the
previous event
➡ The processing of the previous event

could be screwed up

40

Processing

ADC

disk

start

interrupt

delay

TRIGGER

discriminator

Data path
Trigger path

τ = 1 m
s

What if a trigger is
created when the
system is busy?

BUSY LOGIC

41

Processing

ADC

disk

start

interrupt

delay

TRIGGER

discriminator

Data path
Trigger path

τ = 1 m
s

f = 1 kHz
λ= 1 ms

BUSY LOGIC

➡ Need a feedback mechanism,  
to know if the data processing
pipeline is free to process  
a new event: the busy logic

41

Processing

ADC

disk

start

interrupt

delay

TRIGGER

discriminator

Data path
Trigger path

τ = 1 m
s

f = 1 kHz
λ= 1 ms

BUSY LOGIC

➡ Need a feedback mechanism,  
to know if the data processing
pipeline is free to process  
a new event: the busy logic

➡ A minimal busy logic can be
implemented with
➡ an AND gate
➡ a NOT gate
➡ a flip-flop

41

Processing

ADC

disk

start

interrupt

delay

TRIGGER

discriminator

Data path
Trigger path

τ = 1 m
s

f = 1 kHz
λ= 1 ms

BUSY LOGIC

42

Processing

ADC

disk

start

delay

TRIGGER
Data path

Trigger path

τ = 1 m
s

NOT

AND

BUSY
LOGIC

CLEAR

SET
Q

flip-flop

ready

f = 1 kHz
λ= 1 ms

Any new trigger is inhibited
by the AND gate (busy)

➡ Need a feedback mechanism,  
to know if the data processing
pipeline is free to process  
a new event: the busy logic

➡ A minimal busy logic can be
implemented with
➡ an AND gate
➡ a NOT gate
➡ a flip-flop

DEADTIME AND EFFICIENCY

43

f average rate of  
physics (input)
𝛎 average rate of  
DAQ (output)
τ: deadtime

➡ The busy mechanism protects
our electronics from unwanted 
triggers
➡ During the busy time,

no signals are accepted,
cause of inefficiency

➡ this is a source of dead-time
➡ Due to stochastic fluctuations

➡ DAQ rate always < physics rate
➡ Efficiency always < 100%

➡ To cope with the input signal
fluctuations, we have to over-
design our DAQ system
➡ can we mitigate this effect?

➡ The busy mechanism protects
our electronics from unwanted 
triggers
➡ During the busy time,

no signals are accepted,
cause of inefficiency

➡ this is a source of dead-time
➡ Due to stochastic fluctuations

➡ DAQ rate always < physics rate
➡ Efficiency always < 100%

➡ To cope with the input signal
fluctuations, we have to over-
design our DAQ system
➡ can we mitigate this effect?

DEADTIME AND EFFICIENCY

44

f average rate of  
physics (input)
𝛎 average rate of  
DAQ (output)
τ: deadtime

DEADTIME AND EFFICIENCY
➡ The busy mechanism protects

our electronics from unwanted 
triggers
➡ During the busy time,

no signals are accepted,
cause of inefficiency

➡ this is a source of dead-time
➡ Due to stochastic fluctuations

➡ DAQ rate always < physics rate
➡ Efficiency always < 100%

➡ To cope with the input signal
fluctuations, we have to over-
design our DAQ system
➡ can we mitigate this effect?

45

f average rate of  
physics (input)
𝛎 average rate of  
DAQ (output)
τ: deadtime

➡ What if we were able to make the
system more deterministic and
less dependent on the arrival time
of our signals?
➡ Then we could ensure that events don’t

arrive when the system is busy
➡ This is called de-randomization

➡ How can be achieved?
➡ by buffering the data (having a holding

queue where we can slot it up to be
processed)

➡ Maintaining 𝛕 ~ λ (traffic intensity), high
efficiency can be obtained even with
moderate depth of FIFOs

DE-RANDOMIZATION

46

Inter-arrival  
time distribution

ms

ms

Data access  
time distribution

➡ What if we were able to make the
system more deterministic and
less dependent on the arrival time
of our signals?
➡ Then we could ensure that events don’t

arrive when the system is busy
➡ This is called de-randomization

➡ How can be achieved?
➡ by buffering the data (having a holding

queue where we can slot it up to be
processed)

➡ Maintaining 𝛕 ~ λ (traffic intensity), high
efficiency can be obtained even with
moderate depth of FIFOs

DE-RANDOMIZATION

47

Inter-arrival  
time distribution

ms

ms

Data access  
time distribution

➡ What if we were able to make the
system more deterministic and
less dependent on the arrival time
of our signals?
➡ Then we could ensure that events don’t

arrive when the system is busy
➡ This is called de-randomization

➡ How can be achieved?
➡ by buffering the data
➡ having a holding queue where we can

slot it up to be processed
➡ Maintaining 𝛕 ~ λ (traffic intensity),

high efficiency can be obtained even
with moderate depth of FIFOs

DE-RANDOMIZATION

48

Inter-arrival  
time distribution

ms

ms

Data access  
time distribution

FIFO

λ (ms) f (Hz)

 𝛕 (ms) 𝛎 (Hz)

➡ What if we were able to make the
system more deterministic and
less dependent on the arrival time
of our signals?
➡ Then we could ensure that events don’t

arrive when the system is busy
➡ This is called de-randomization

➡ How can be achieved?
➡ by buffering the data
➡ having a holding queue where we can

slot it up to be processed
➡ Maintaining 𝛕 ~ λ (traffic intensity~1),

high efficiency can be obtained even
with moderate depth of FIFOs

DE-RANDOMIZATION: THE LEAKY BUCKET

49

λ (ms) f (Hz)

 𝛕 (ms) 𝛎 (Hz)

—> search for “Queuing theory”

DE-RANDOMIZATION

➡ Input fluctuations can be  
absorbed and smoothed by  
a queue
➡ A FIFO can provide a ~steady  

and de-randomized  
output rate

➡ Busy is now defined by  
the buffer occupancy
➡ Processor pulls data from  

the buffer at fixed rate,  
separating the event receiving  
and data processing steps

50

Processing

ADC

disk

start

delay

TRIGGER
Data path

Trigger path

τ = 1 m
s

FIFO

AND

BUSY
LOGIC

data ready

busy (full)

f = 1 kHz
λ= 1 ms

DE-RANDOMIZATION SUMMARY

➡ The FIFO decouples the  
low latency front-end from  
the data processing
➡ Minimize the amount of

“unnecessary” fast components
➡ ~100% efficiency with minimal

deadtime achievable if
➡ ADC can operate at rate >> f
➡ Data processing and storing

operate at a rate ~ f
➡ Could the delay be replaced

with a “FIFO”?
➡ Analog pipelines, heavily used in

LHC DAQs

51

Processing

ADC

disk

start

delay

TRIGGER
Data path

τ = 1 m
s

FIFO

AND

BUSY
LOGIC

data ready

busy (full)

f = 1 kHz
λ= 1 ms

Trigger path

DE-RANDOMIZATION SUMMARY

➡ The FIFO decouples the  
low latency front-end from  
the data processing
➡ Minimize the amount of

“unnecessary” fast components
➡ ~100% efficiency with minimal

deadtime achievable if
➡ ADC can operate at rate >> f
➡ Data processing and storing

operate at a rate ~ f
➡ Could the delay be replaced

with a “FIFO”?
➡ Analog pipelines, heavily used in

LHC DAQs

52

Processing

ADC

disk

start

p
i
p
e
l
i
n
eTRIGGER

Data path

τ = 1 m
s

FIFO

AND

BUSY
LOGIC

data ready

busy (full)

f = 1 kHz
λ= 1 ms

Trigger path

COLLIDER SET-UP

53

Processing

ADC

disk

start

p
i
p
e
l
i
n
eTRIGGER

τ = 1 m
s

FIFO

AND

data ready

busy (full)

BX

TIMING

BUSY
LOGIC

NOT

abort

COLLIDER SET-UP

➡ Do we need de-randomization
buffers also in collider setups?
➡ Particle collisions are synchronous
➡ But the time distribution of triggers

is random: good events are
unpredictable

53

Processing

ADC

disk

start

p
i
p
e
l
i
n
eTRIGGER

τ = 1 m
s

FIFO

AND

data ready

busy (full)

BX

TIMING

BUSY
LOGIC

NOT

abort

COLLIDER SET-UP

➡ Do we need de-randomization
buffers also in collider setups?
➡ Particle collisions are synchronous
➡ But the time distribution of triggers

is random: good events are
unpredictable

➡ De-randomization is still needed

53

Processing

ADC

disk

start

p
i
p
e
l
i
n
eTRIGGER

τ = 1 m
s

FIFO

AND

data ready

busy (full)

BX

TIMING

BUSY
LOGIC

NOT

abort

COLLIDER SET-UP

➡ Do we need de-randomization
buffers also in collider setups?
➡ Particle collisions are synchronous
➡ But the time distribution of triggers

is random: good events are
unpredictable

➡ De-randomization is still needed
➡More complex busy logic to

protect buffers and detectors
➡ Eg: accept n events every m  

bunch crossings
➡ Eg: prevent some  

dangerous trigger patterns

53

Processing

ADC

disk

start

p
i
p
e
l
i
n
eTRIGGER

τ = 1 m
s

FIFO

AND

data ready

busy (full)

BX

TIMING

BUSY
LOGIC

NOT

abort

OUTLINE

➡ Introduction
➡ What is Trigger and DAQ?
➡ Overall TDAQ framework

➡ Basic TDAQ concepts
➡ Digitization, Latency
➡ Deadtime, Busy
➡ De-randomization

➡ Scaling up
➡ Readout and Event Building
➡ Buses vs Network

➡ Fight bottlenecks

54

READOUT AND DAQ THROUGHPUTS

➡ As the data volumes and rates increase, new architectures are needed
55

RDAQ = Rmax
T ⇥ SE

more channels, more complex events

fa
st

er
 L

1
el

ec
tro

ni
cs

tre
nd of

 in
cre

asi
ng

ban
dwidth

UPDATED FIGURE!

56

Courtesy of A.Cerri

 Past
 Present
 HL-LHC
 Future

ADDING MORE CHANNELS

storage

Processing

ADC

TRIGGER
1 channel

● Adding more channels requires a hierarchical structure
committed to the data handling and conveyance

57

Front-End

Readout

Event Building

Event Filtering

Event Logging

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

data digitization
data buffering

ADDING MORE CHANNELS

storage

Processing

ADC

TRIGGER
N channels

● Adding more channels requires a hierarchical structure
committed to the data handling and conveyance

58

Front-End

Readout

Event Building

Event Filtering

Event Logging

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

data digitization
data bufferingADCADCADC

ADDING MORE CHANNELS

storage

Processing

ADC

TRIGGER
N channels

● Adding more channels requires a hierarchical structure
committed to the data handling and conveyance

59

Front-End

Readout

Event Building

Event Filtering

Event Logging

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

data digitization
data bufferingADCADCADC

Trigger
clock synch
trigger decision

ADDING MORE CHANNELS

storage

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

60

Front-End

Readout

Event Building

Event Filtering

Event Logging

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

data digitization
data buffering

● Adding more channels requires a hierarchical structure
committed to the data handling and conveyance

Trigger
clock synch
trigger decision

ADDING MORE CHANNELS

storage

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

61

Front-End

Readout

Event Building

Event Filtering

Event Logging

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

data digitization
data buffering

● Adding more channels requires a hierarchical structure
committed to the data handling and conveyance

Processing

Trigger
clock synch
trigger decision

ADDING MORE CHANNELS

storage

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

62

Front-End

Readout

Event Building

Event Filtering

Event Logging

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

data digitization
data buffering

● Adding more channels requires a hierarchical structure
committed to the data handling and conveyance

Processing

Trigger
clock synch
trigger decision

ADDING MORE CHANNELS

63

Front-End

Readout

Event Building

Event Filtering

Event Logging

● Buffering usually needed at every level
● DAQ can be seen as a multi level buffering system

storage

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

Processing

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

data digitization
data buffering

Trigger
clock synch
trigger decision

BUILDING BLOCKS
➡ Reading out data or building events out  

of many channels requires many components

64

In the design of our
hierarchical data-collection
system, we have better
define “building blocks”

➤ Readout crates

➤ HLT racks

➤ Event Building groups

➤ DAQ slicesstorage

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

Farm Farm Farm….

READOUT TOPOLOGY

➡ How to organize the interconnections inside the building
blocks and between building blocks?
➡ How to connect data sources and data destinations?
➡ Two main classes: bus or network

65

data sources

data processors

network

bus

bus bus

READOUT TOPOLOGY

➡ How to organize the interconnections inside the building
blocks and between building blocks?
➡ How to connect data sources and data destinations?
➡ Two main classes: bus or network

65

data sources

data processors

network

bus

bus bus

BUSES

➡ Devices connected via a shared bus
➡ Bus → group of electrical lines

➡ Sharing implies arbitration
➡ Devices can be master or slave
➡ Devices can be addresses (uniquely identified) on the bus

➡ E.g.: SCSI, Parallel ATA, VME, PCI …
➡ local, external, crate, long distance, ...

66

Select Line

Device  
1

Device  
2

Device  
3

Device  
4

Data Lines

MASTERSLAVE

BUS FACTS

➡ Simple :-)
➡ Fixed number of lines (bus-width)
➡ Devices have to follow well defined interfaces

➡ Mechanical, electrical, communication, ...
➡ Scalability issues :-(

➡ Bus bandwidth is shared among all the devices
➡ Maximum bus width is limited
➡ Maximum number of devices depends on bus length
➡ Maximum bus frequency is inversely proportional to the bus length

➡ On the long term, other “effects” might limit the scalability of
your system

67

Andrea.Negri@unipv.it Intro to DAQ 68

Bus facts
●Simple :-)
–Fixed number of lines (bus-width)
–Devices have to follow well defined interfaces
●Mechanical, electrical, communication, ...
●Scalability issues :-(
–Bus bandwidth is shared among all the devices
–Maximum bus width is limited
–Maximum bus frequency is inversely proportional to the bus
length
–Maximum number of devices depends on bus length
–On the long term, other “effects” might limit the scalability of
your systemOn the long term, other “effects” might

limit the scalability of your system

BUS STANDARDS

➡ VME Modular electronics
➡ VME bus programming
➡ μATCA
➡ PCI express

69

NETWORK

➡ All devices are equal
➡ They communicate directly with  

each other via messages
➡ No arbitration, simultaneous  

communications
➡ Eg: Telephone, Ethernet, Infiniband, …

70

NETWORK
➡ In switched networks, switches move

messages between sources and
destinations
➡ Find the right path

➡ How congestions  
(two messages with the same
destination at the same time) are
handled?
➡ The key is buffering

71

NETWORK
➡ In switched networks, switches move

messages between sources and
destinations
➡ Find the right path

➡ How congestions  
(two messages with the same
destination at the same time) are
handled?
➡ The key is buffering

71

NETWORK
➡Networks scale well (and allow redundancy)

➡ They are the backbones of the LHC DAQ systems

72

RECAP

➡ Very Front End
➡ does the analog part
➡ ADC, low-level calibration, zero

suppression, lossless compression
➡ low-power, rad-tolerant

➡ Quasi Front End
➡ medium scale aggregation, local

reconstruction, ”lossy”
compression, transition to
standard protocol on optical links

➡ Commodity Of The Shelf
➡ COTS switched networks
➡ COTS servers, with co-

processors (GPU, FPGA)

73
E. Meschi, Summer Student Lectures 2022

FIGHTING BOTTLENECKS

➡ Artificial deadtime
➡ Data collection
➡ Multi-level trigger
➡ Data-flow control
➡ Data reconstruction

74

1 - ARTIFICIAL DEADTIME

75

1 - ARTIFICIAL DEADTIME
➡ If two signals arrive very close in time

➡ detector signals overlap (ask you detector expert, are you sure
the detector is good at that rate? is your FE fast enough?)

➡ can have dead-time if not added any … FIFO!

75

1 - ARTIFICIAL DEADTIME
➡ If two signals arrive very close in time

➡ detector signals overlap (ask you detector expert, are you sure
the detector is good at that rate? is your FE fast enough?)

➡ can have dead-time if not added any … FIFO!
➡ Is derandomization enough?

➡ if FE readout windows overlap
➡ add artificial dead-time to protect the FrontEnd (simple deadtime)

➡ if FE buffers overflow in case of trigger bursts
➡ add artificial dead-time (complex deadtime)

75

1 - ARTIFICIAL DEADTIME
➡ If two signals arrive very close in time

➡ detector signals overlap (ask you detector expert, are you sure
the detector is good at that rate? is your FE fast enough?)

➡ can have dead-time if not added any … FIFO!
➡ Is derandomization enough?

➡ if FE readout windows overlap
➡ add artificial dead-time to protect the FrontEnd (simple deadtime)

➡ if FE buffers overflow in case of trigger bursts
➡ add artificial dead-time (complex deadtime)

75

➡ Example in ATLAS @Run2: 90 kHz, < 2%
➡ Simple deadtime: 4 LHC BC [100 ns] after any L1 trigger
➡ Complex deadtime: leaky-bucket algorithms x4 detectors

➡ two parameters: bucket size (in number of events) /
readout time (in BC units)

➡ i.e. 9 / 351 for LAr readout

2 - DATA COLLECTION

76

storage

Processing

ADC

TRIGGER
N channels

ADCADCADC

➡ single processing system
➡ common architecture in test-beams and small experiments
➡ often rate limited by (interesting) physics itself, not TDAQ
➡ or by the sensors

➡ bottlenecks
➡ single processing unit

➡ collect / format / compress data can be heavy
➡ simultaneously writing to storage

➡ final storage:
➡ VME up to 50MB/s → 1TB in 6h
➡ too many disks in one week!

➡ Data Collection unit decouples storage from processing
➡ dedicated to format, compress and store

 more sensors ⇒ more granularity

 multiple digitisers ⇒ more parallelism

2 - DATA COLLECTION

76

storage

Processing

ADC

TRIGGER
N channels

ADCADCADC

Data Collection

➡ single processing system
➡ common architecture in test-beams and small experiments
➡ often rate limited by (interesting) physics itself, not TDAQ
➡ or by the sensors

➡ bottlenecks
➡ single processing unit

➡ collect / format / compress data can be heavy
➡ simultaneously writing to storage

➡ final storage:
➡ VME up to 50MB/s → 1TB in 6h
➡ too many disks in one week!

➡ Data Collection unit decouples storage from processing
➡ dedicated to format, compress and store

 more sensors ⇒ more granularity

 multiple digitisers ⇒ more parallelism

3 - MULTI-LEVEL TRIGGER

➡ Reduce the rate at each stage, with
limited buffer size and no deadtime
➡ 𝛕 ~ λ (traffic intensity~1)

➡ High level triggers with longer latency
➡ more complex filters
➡ more data (for example silicon detectors)

77

 Recall on trigger architectures

➡ Real time system
➡ must respond within some fixed latency
➡ Latency = max Latency
➡ over fluctuations is bad, will create deadtime

➡ Non-real-time system
➡ responds as soon as it’s available
➡ Latency = Mean Latency
➡ over fluctuations is fine, shouldn’t create deadtime

 CERN - LEP
➡ 105 channels
➡ 22 μs crossing – no event overlap
➡ single interaction
➡ L1 ~ 103 Hz
➡ L2 ~ 102 Hz
➡ L3 ~ 10 Hz
➡ 100 kB/ev → 1 MB/s

4 - DATAFLOW CONTROL

78

4 - DATAFLOW CONTROL
➡ Buffers are not the “final solution”

➡ Can overflow, with bursts and unusual event sizes
➡ In these cases, can

➡ discard data locally or
➡ exert “back-pressure”, i. e. ask previous level(s) to

block the dataflow

78

4 - DATAFLOW CONTROL
➡ Buffers are not the “final solution”

➡ Can overflow, with bursts and unusual event sizes
➡ In these cases, can

➡ discard data locally or
➡ exert “back-pressure”, i. e. ask previous level(s) to

block the dataflow
➡ Throughput optimization means avoiding

dead-time due to back-pressure
➡ using knowledge of the input buffer state

78

4 - DATAFLOW CONTROL
➡ Buffers are not the “final solution”

➡ Can overflow, with bursts and unusual event sizes
➡ In these cases, can

➡ discard data locally or
➡ exert “back-pressure”, i. e. ask previous level(s) to

block the dataflow
➡ Throughput optimization means avoiding

dead-time due to back-pressure
➡ using knowledge of the input buffer state

➡ Who controls the flow? FE (push) or EB (pull)

➡ FE Push: Events are sent as soon as data are
available to the sender (e.g. round-robin algorithm)
⟹ Busy or Throttle (block trigger)

➡ EB Pull : events are required by a given destination
processes (may need an event manager) ⟹ back-
pressure (block dataflow)

➡ Push-Pull ⟹ busy and back-pressure

78

push

pull

5 - MOVE FINAL RECONSTRUCTION
➡ Can play with data size and delayed reconstruction to overcome

limitations
➡ Trigger Level Analysis / data scouting: data compressed via full event

reconstruction, avoid to save raw detector data
➡ if the bandwidth to write to the permanent storage is limited

➡ Data parking: data saved on temporary storage and reconstructed when
resources are available (during fills,….)
➡ if the resources to promptly reconstruct the data in the computing center are limited

79
CMS paper, 2024

https://arxiv.org/pdf/2403.16134.pdf
http://www.apple.com/uk

CONCLUDE WITH GENERAL T/DAQ TRENDS

80

CONCLUDE WITH GENERAL T/DAQ TRENDS

➡ Increasing readout channels, and front-end
cards, distributed in multi-level three structure

80

CONCLUDE WITH GENERAL T/DAQ TRENDS

➡ Increasing readout channels, and front-end
cards, distributed in multi-level three structure

➡ Deal with dataflow instead of latency
➡ decouple DAQ from High Level Triggers
➡ decouple dataflow from storage, with temporary buffers
➡ Use COTS network and processing

80

CONCLUDE WITH GENERAL T/DAQ TRENDS

➡ Increasing readout channels, and front-end
cards, distributed in multi-level three structure

➡ Deal with dataflow instead of latency
➡ decouple DAQ from High Level Triggers
➡ decouple dataflow from storage, with temporary buffers
➡ Use COTS network and processing

➡ Increase data aggregation at the Event Building
➡ reducing request rates on DAQ software
➡ per-time-frame, per-orbit instead of per-event

80

CONCLUDE WITH GENERAL T/DAQ TRENDS

➡ Increasing readout channels, and front-end
cards, distributed in multi-level three structure

➡ Deal with dataflow instead of latency
➡ decouple DAQ from High Level Triggers
➡ decouple dataflow from storage, with temporary buffers
➡ Use COTS network and processing

➡ Increase data aggregation at the Event Building
➡ reducing request rates on DAQ software
➡ per-time-frame, per-orbit instead of per-event

➡ Use networks as soon as possible
➡ toward commercial bidirectional point-to-multipoint

architecture

80

CONCLUDE WITH GENERAL T/DAQ TRENDS

➡ Increasing readout channels, and front-end
cards, distributed in multi-level three structure

➡ Deal with dataflow instead of latency
➡ decouple DAQ from High Level Triggers
➡ decouple dataflow from storage, with temporary buffers
➡ Use COTS network and processing

➡ Increase data aggregation at the Event Building
➡ reducing request rates on DAQ software
➡ per-time-frame, per-orbit instead of per-event

➡ Use networks as soon as possible
➡ toward commercial bidirectional point-to-multipoint

architecture
➡ Use “network” design already at small scale

➡ easily get high performance with commercial
components

80

CLEAR WHY?

81

https://indico.cern.ch/event/1337180/

