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The charged Pion (here 𝜋+) decay:

Why study Pion decays?
Phase I measurement:

PIONEER goals:

● Improve sensitivity
by a factor 15

● Directly test lepton 
flavour (e-𝜇) universality  since

● Probe SM extensions affecting 

Motivation:
● Hints for lepton flavour universality 

violation in                   decays3

● Anomalous 𝜇 magnetic moment 
measurement4

● Observed forward-backward asymmetry
in decays to e/𝜇5

Current situation:

● SM1:

● Exp.2:

1 & 2: Altmannshofer, W., et al. arXiv preprint (2022) arXiv:2203.01981  [hep-ex].                                                               
1: V. Cirigliano and I. Rosell, Phys. Rev. Lett. 99, 231801 (2007), arXiv:0707.3439 [hep-ph].                                                 
2: A. Aguilar-Arevalo et al. (PIENU), Phys. Rev. Lett. 115, 071801 (2015), arXiv:1506.05845 [hep-ex]
 

3: R. Aaij et al. (LHCb), Phys. Rev. D 97, 072013 (2018), arXiv:1711.02505 [hep-ex]. 
4: D. P. Aguillard et al. (The Muon g−2 Collaboration) Phys. Rev. Lett. 131, 161802  (2023) arXiv:2308.06230 [hep-ex]. 
5: A. Carvunis, A. Crivellin, D. Guadagnoli, and S. Gangal, (2021), arXiv:2106.09610 [hep-ph]. 
 

 

 
 

 
 

𝜋+

https://arxiv.org/abs/2308.06230
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Phase II measurement:

PIONEER goals:

● Measure pion beta-
decay for a direct 
measurement of        : 

Motivation:
● Hints for Cabibbo angle anomaly 

combining results of various experiments3

The charged Pion (here 𝜋+) decay:

Why study Pion decays?

Current situation:

● SM1:

● Exp.2:

3: D. Bryman, V. Cirigliano, A. Crivellin, and G. Inguglia, (2021), arXiv:2111.05338 [hep-ph]. 
 

 

                  
 

𝜋+

1 & 2: Altmannshofer, W., et al. arXiv preprint (2022) arXiv:2203.01981  [hep-ex].                                                               
1: V. Cirigliano and I. Rosell, Phys. Rev. Lett. 99, 231801 (2007), arXiv:0707.3439 [hep-ph].                                                 
2: A. Aguilar-Arevalo et al. (PIENU), Phys. Rev. Lett. 115, 071801 (2015), arXiv:1506.05845 [hep-ex]
 



4

Experimental setup
PIONEER will need:

① High intensity, low 
momentum pion beam   

② Highly segmented active 
target (ATAR) with good 
energy and time resolution

③ Tracker to link ATAR and 
calorimeter signal

④ Fast calorimeter with 
excellent energy resolution, 
25 radiation lengths deep 
and covering 3𝜋 sr solid 
angle 

⑤ Entrance detectors, fast 
readout and electronics, 
DAQ,..

1: Altmannshofer, W., et al. arXiv preprint (2022) arXiv:2203.01981  [hep-ex].                                                                        
2: Mazza, S. Instruments, 2021, 5. no. 4: 40. arXiv:2111.05375 [physics.ins-det]                                                                    
3: Mazza, S. et al. Proceedings of Science, 2023 V 420. https://doi.org/10.22323/1.420.0015                                                        
 

Schematic plan:

Calorimeter signal1: ATAR signal2,3:

https://doi.org/10.22323/1.420.0015
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Test beam 2022 at PSI:

● Measure important 
parameters of the beam

● Use results as simulation 
input for design studies

Key parameters:

● Pion rate    

● Momentum bite

● Beam contamination

● Spot size in beam focus

● Beam emittance 

The pion beam
PiE5 beamline at PSI:

Location of 
measurements

SiMon
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Test beam 2022 at PSI:

● Measure important 
parameters of the beam

● Use results as simulation 
input for design studies

Key parameters:

● Pion rate  R𝛑 = 633 kHz 
(~300 kHz in target area)

● Momentum bite
Δp/p < 2%

● Particle contamination 
32% muons, 25% positrons

● Spot size in beam focus
𝜎x= 23 mm, 𝜎y= 10 mm

● Beam emittance 

The pion beam
Results: Energy Timing

Position
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The pion beam
Results:

Separator Quadrupole 
Triplet

Beam

Detector

X-Measurement Y-MeasurementTest beam 2022 at PSI:

● Measure important 
parameters of the beam

● Use results as simulation 
input for design studies

Key parameters:

● Pion rate  R𝛑 = 633 kHz 
(~300 kHz in target area)

● Momentum bite
Δp/p < 2%

● Particle contamination 
32% muons, 25% positrons

● Spot size in beam focus
𝜎x= 23 mm, 𝜎y= 10 mm

● Beam emittance 
𝜀x/y= 617/232 mm mrad
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The ATAR
Setup:
Low energy proton
beam at CENPA

Test beam 2023 at CENPA:

● Characterization of AC-LGAD prototypes
● Measurement of angular dependent gain

Key parameters1,2:

● High granularity, minimal blind/ dead regions
● Fast timing
● Good energy resolution over large dynamic range

1: Mazza, S. Instruments, 2021, 5. no. 4: 40. arXiv:2111.05375 [physics.ins-det]                                                                    
2: Mazza, S. et al. Proceedings of Science, 2023 V 420. https://doi.org/10.22323/1.420.0015                                                 

AC-LGADDC-LGAD

AC-LGADs have:
● Less dead area
● Intrinsic charge sharing

3:Ott, J.13th Hiroshima Symposium, https://indico.cern.ch/event/1184921/contributions/5574780/                                                 
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Test beam 2023 at PSI:

● Explore possibility of a LYSO 
calorimeter 

Key parameters:

● Excellent energy resolution
● Fast detector response 

The calorimeter

LYSO crystals             Liquid Xenon (LXe) 

Possible calorimeter choices1:

Simulated energy spectrum1

1: Altmannshofer, W., et al. arXiv preprint (2022) arXiv:2203.01981  [hep-ex].                                                         
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LYSO beamtime
Goals: 

Measure:

● Energy resolution
● Uniformity
● Albedo

of an array of LYSO crystals

Setup:

① Positron beam exit   
② Veto detector
③ Entrance detector T0
④ Beam hodoscope
⑤ LYSO array
⑥ NaI detectors
⑦ XY-table

Setup at PSI PiM1 beamline:

①②④
③⑤

⑦

⑤

⑥
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Upstream detectors: 

Use upstream detectors to trigger and  
to select events based on:

● particle species
● event position

Setup:

Muons

Trigger:  T0 & Veto
____

LYSO beamtime analysis - work in progress

Positrons
Δp/p < 1%
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Energy resolution: 

Strategy:
● Select events/ apply cuts
● Apply calibration
● Add up contributions of all crystals 
● Fit energy distribution

Plots by Omar Breesly

LYSO beamtime analysis - work in progress

PRELIMINARY

Calibration:

Simulation Data
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Uniformity:

● Scan the crystal array 
along each axis

● Check uniformity of 
detector response

Tomography run: 

Plots by Omar Breesly

LYSO beamtime analysis - work in progress

PRELIMINARYPRELIMINARY

Trigger: T0 & S2

PMT LYSO

T0

S2
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PiE5 beamline:

● Measure full phase space 
(momentum & position) 

● Measure as upstream as 
possible to explore possible 
improvements on last beam 
section

Tapered LYSO array:

● Test section a LYSO calo

Outlook
Planned test beams:

● Test tapered LYSO 
crystal array

● Remeasure PiE5 
beam as upstream 
as possible

● Test liquid xenon 
calorimeter 
prototype

● More LGAD /ATAR 
prototype tests 
upcomming

● Large prototype 
beam test
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Thank you!
The PIONEER collaboration: Over 80 collaborators from 24 institutions
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Backup slides
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PiM1 beamline

Cline, E., et al. "Characterization of muon and electron beams in the Paul Scherrer Institute 
PiM1 channel for the MUSE experiment." Physical Review C 105.5 (2022): 055201.

PiM1 beamline at PSI:Beam properties:
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Define sigma Matrix:

Sigma Matrix changes as:

Sigma at new position:

Emittance:

Beam Transport with a Quadrupole

Free beam transport
Focus
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Implementation of upstream beam elements
Multiple upstream elements of beamline have been implemented:

● Quadrupole magnets
○ Based on geometry of QSK 41 - 43 triplet
○ Quadrupole field strength can be set in json file
○ Field can be scaled in macro file

● Dipole magnets
○ Dipole field strength can be set in json file
○ Field can be scaled in macro file

● Separator
○ Based on geometry of SEP 41
○ Strength of electric and magnetic field can be set in json 

file 
● Collimator

○ Thickness and opening in x & y can be set in json file
● Ghost planes

○ Record the particles that fly through 
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Comparison with last beam time results
Measurement:

Simulation:
Pions:

● Mean X = 0.0 mm
● Mean Y = 0.0 mm
● Sig X = 26.76 mm
● Sig Y = 13.1 mm

Muons: 
● Mean Y = 17.4 mm
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Long beamline setup:

Arriving pions: 

● 4.1 % of simulated pions stop in ATAR
● ~ 219 kHz estimated from beamtime rates

Backgrounds, per stopped pion:

● 0.09 pion in Calo
● 1.05 muon in Calo
● 0.014 muon in ATAR

Short beamline setup:

Arriving pions:

● 6.9 % of simulated pions stop in ATAR 
● ~ 372 kHz estimated from beamtime rates

Backgrounds, per stopped pion:

● 0.03 pion in Calo
● 0.33 muon in Calo
● 0.013 muon in ATAR

Full final beam section simulation - pure pion beam
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Example of scaling with measured rate: 

Short vs long focus

Beamtime setup: Short beamline setup:

Counts:      Pions on SiMON:       268’437 / 1’000’000     Pions in ATAR:       69’425 / 1’000’000

       Corresponds to Corresponds to 

Rates:         Measured:             1’375 kHz     Calculated:       372 kHz
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Long beamline setup:Short beamline setup:

Full final beam section simulation - pure pion beam
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The ATAR
Test beam 2023 at CENPA:

● Testing gain suppression as a function of angle in 
low gain avalanche detectors (AC-LGADs)

Key parameters1,2:

● High granularity, minimal blind/ dead regions
● Fast timing
● Good energy resolution over large dynamic range

1: Mazza, S. Instruments, 2021, 5. no. 4: 40. arXiv:2111.05375 [physics.ins-det]                                                                    
2: Mazza, S. et al. Proceedings of Science, 2023 V 420. https://doi.org/10.22323/1.420.0015                                                 

Results:     

3:Ott, J.13th Hiroshima Symposium, https://indico.cern.ch/event/1184921/contributions/5574780/                                                 
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Entrance detectors for LYSO beamtime
Setup:Hodoscope:

● 24 x 24 mm2 total area
● 2 layers of BC 404 bars with 

12 channels
● Each channel

○ 2 mm wide
○ 1mm thick

● Read out by 24 SiPMs
on alternating sides

Entrance detector:
● 25 x 25 mm2 total area
● 1 piece of BC 404 with 1mm 

thickness
● Read out by a PMT

Veto detector:
● 22 mm diameter hole
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Trigger:
T0 & S2

Energy resolution: 

Strategy:
● Select events
● Apply calibration
● Add up contributions

of all crystals 
● Fit energy 

distribution

Uniformity:

X-scan:

Tomography run:

Plots by Omar Breesly

LYSO beamtime analysis - work in progress

PRELIMINARY

PRELIMINARY

PRELIMINARY

PMT LYSO

Calibration:Simulation

Calibration Data

T0

S2
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Result:Idea:
● Test uniformity along the crystals
● Shoot 220 MeV beam sideways into the 

crystal (MIP like behaviour)
● Use yellow filters

Muon tomography run
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Setup:
● Measure particles multiple scattering on 

the surface and not depositing the full 
energy in the crystal

● Trigger on T0 & S2 & not Veto

Reason for the measurement:

● Different Geant4 physics lists have a huge 
difference in albedo of LYSO

● Albedo could contribute significantly to the 
tail fraction (⅓ in the worse case)

Albedo measurement
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Result:
Albedo measured but not quantified  

Reason for the measurement:

● Different Geant4 physics lists have a huge 
difference in albedo of LYSO

● Albedo could contribute significantly to the 
tail fraction (⅓ in the worse case)

Albedo measurement


