Simulation of Hexagonal Pixel Configurations in Monolithic Active Pixel Sensors

Larissa Mendes, Håkan Wennlöf, Anastasiia Velyka, Adriana Simancas, Ingrid-Maria Gregor, Lennart Huth, Manuel Alejandro Del Rio Viera, Simon Spannagel

12th edition of the Beam Telescopes and Test Beams Workshop 16 April 2024

The Tangerine Project TowArds the Next GEneRation of SilicoN DEtectors

- Research and development of **new silicon sensors** for future lepton colliders and test beam telescopes.
- Part of the **Work Package 1 (WP1):** Development MAPS in 65 nm CMOS Imaging Technology:

- Increase logic density
 Allow smaller pixels
 Decrease overall power consumption
 Low noise/threshold
- Reduction of costs

The Tangerine Project TowArds the Next GEneRation of SilicoN DEtectors

• Research and development of **new silicon sensors** for future lepton colliders and test beam telescopes.

• Part of the **Work Package 1 (WP1):** Development MAPS in 65 nm CMOS Imaging Technology:

Increase logic density
Allow smaller pixels
Decrease overall power consumption
Low noise/threshold
Reduction of costs

A combination of **detailed simulations** and **prototype testing** can be used to **efficiently guide the way in sensor developments**

Sensor Layouts Under Study

Monolithic Active Pixel Sensors (MAPS) with small collection electrode

Space ("Gap") in Continuous N-type Implant

structures not in scale !!

Silicon sensor simulation

Goal: Accurate simulation of the charge collection behaviour in the sensitive volume of **MAPS 65 nm CMOS Imaging Technology**

Issue: The access to manufacturing process information is extremely **limited**

Solution: Development of a technology-independent simulation approach using generic properties

- Impose constraints on implant depth, doping concentrations, input voltages, etc.
- Perform parameter scans, varying it within a range, and observe the behavior of the electric field and depleted volume to identify working point

Silicon sensor simulation

Execute **highly detailed** simulations for studying the possibility of using **hexagonal pixels** within a 65 nm CMOS imaging technology for MAPS, with small collection electrodes.

what improvements can we make by changing the pixel shape?

Simulation approach

Finite element simulation

Monte Carlo simulation

Silicon sensor simulation Why hexagons?

Principles:

- Reduce the drift path while maintaining area for circuitry
- Reduced number of neighboring pixels

Reduce electric field edge effects of square design

More homogenous response over pixel cell \rightarrow Relevant for precise timing

Simulation results

Finite element simulation results

Monte Carlo simulations Allpix²simulation results using TCAD fields

- Simulations allow for the analysis of multiple observables: cluster size, efficiency and spatial resolution.
- Tests have been performed **comparing square pixels and hexagonal pixels**, maintaining the pixel area
 - The space available for readout electronics thus remains the same per pixel

Key Element	Value
number_of_events	100,000
particle_type	e-
source_energy	5 GeV
beam_size	100 um
electronics_noise	10e
threshold	multiple values scanned
threshold_smearing	5e
physics models	Masetti-Canali model, Shockley-Read-Hall Auger recombination

Monte Carlo simulations Eta-correction (η-correction)

To correct for non-linear charge sharing effects

Algorithm for two and three pixel clusters

 $\Delta \varphi = \varphi_{\text{particle}} - \varphi_{\text{cluster}}$ $r_{\text{track, projected}} = r_{\text{track}} \cdot \cos(\Delta \varphi)$

 $\varphi_{\text{Dist}_{\text{track, projected}}} = r_{\text{track}} \cdot \sin{(\Delta \varphi)}.$

- *r_track*: radial distance of the local intercept of the MC particle track from the reference pixel
- *r_cluster*: radial distance of the cluster's center position from the reference pixel

Reference position: Center of lowest, leftmost pixel in cluster

DESY.

Monte Carlo simulations Eta-correction (*η*-correction)

To correct for non-linear charge sharing effects

Algorithm for two and three pixel clusters

 $\Delta \varphi = \varphi_{\text{particle}} - \varphi_{\text{cluster}}$ $r_{\text{track, projected}} = r_{\text{track}} \cdot \cos(\Delta \varphi)$

 $\varphi_{\mathrm{Dist}_{\mathrm{track, projected}}} = r_{\mathrm{track}} \cdot \sin{(\Delta \varphi)}.$

- *r_track*: radial distance of the local intercept of the MC particle track from the reference pixel
- *r_cluster*: radial distance of the cluster's center position from the reference pixel

residual in r: $r_{\text{track, projected}} - r_{\text{cluster}}$ residual in ϕ : $r_{\text{track}} \cdot \sin(\phi)$

DESY.

Monte Carlo simulations

Monte Carlo simulations

Allpix²simulation results using TCAD fields

• Simulations allow for the analysis of multiple observables: cluster size, efficiency and spatial resolution.

Monte Carlo simulations

Allpix²simulation results using TCAD fields

Efficiency vs Threshold

Spatial Resolution vs Threshold

Transient Simulations with TCAD

- Extracting the **time-dependent induced signal** on the collection electrodes, from traversal of a MIP
- **GOAL:** Investigate both pixel **corner** incidence and pixel **centre** incidence
 - Gives indication of "worst case" and "best case" particle hit scenarios

Heavy Ion Model on TCAD

Transient Simulations with TCAD

- Extracting the time-dependent induced signal on the collection electrodes, from traversal of a MIP
- **GOAL:** Investigate both pixel **corner** incidence and pixel **centre** incidence
 - Gives indication of "worst case" and "best case" particle hit scenarios

STATUS:

optimizing pixel cell design and meshing

✤ for both Standard and N-Gap layouts

18

Transient Simulations

Standard Layout

Conclusions and outlook

With **hex pixels** we can combine advantages of MAPS with a small collection electrode (low cost & material, reduced production effort, small sensor capacitance) with precise spatial resolution and fast and complete charge collection

- A hexagonal layout leads to reduced charge sharing in pixel corners and a reduced distance from pixel boundary to pixel centre
 - <u>Allows efficient operation at higher thresholds, and <u>better spatial resolution and fast</u> <u>charge collection</u>
 </u>

Next steps

- Simulate different scenarios (e.g. different hit positions and pixel sizes)
- Compare timing performance on **both pixel geometries**
- Capacitance measurements to be considered
- Detailed timing studies → See M. A Del Rio Viera's presentation

thank you