

A large-area prototype SiPM readout plane for the dRICH detector of ePIC at the EIC: test at the CERN-PS facility

Marco Giacalone for the ePIC Collaboration

12th Beam Telescopes and Test

Beams Workshop

April 15-18, 2024 Edinburgh, United Kingdom

Outline

- The experiment
 - EIC
 - ePIC detector
 - dRICH
- Prototype
 - Photo-Detection Unit (PDU)
 - Readout Box
 - dRICH module
- CERN-PS test beam
 - Setup
 - Signal extraction
 - MC comparison
 - Results

EIC and the ePIC experiment

- Electron-Ion Collider (EIC) is a future accelerator at the Brookhaven National Lab
 - High Luminosity
 - Polarised beams
 - 20 < Collision energy < 140 GeV
 - Various ion species
- Multiple physics targets and studies
 - Distribution of sea quarks and gluons
 - Origin of nucleon mass and spin
 - Gluon density in nuclei
 - Existence of Color Glass Condensate
 - In-depth study of strong nuclear force

EIC and the ePIC experiment

- Electron-Proton/Ion Collider is the first approved EIC detector
 - Collaboration of 171 institutions and 24 countries
- It will feature a 1.7 T superconducting magnet and various detectors
 - Tracking:
 - MAPS + MPGDs
 - PID:
 - AC-LGAD TOF
 - pfRICH
 - hpDIRC
 - dRICH

- Calorimetry:
 - e-endcap: PbWO₄ EMCal
 - Barrel: imaging EMCal
 - outer barrel: HCal
 - h-endcap: finely segmented calorimeter

EIC and the ePIC experiment

hadrons

- Electron-Proton/Ion Collider is the first approved EIC detector
 - Collaboration of 171 institutions and 24 countries
- It will feature a 1.7 T superconducting magnet and various detectors
 - Tracking:
 - MAPS + MPGDs
 - PID:
 - AC-LGAD TOF
 - pfRICH
 - hpDIRC
 - dRICH

- Calorimetry:
 - e-endcap: PbWO₄ EMCal
 - Barrel: imaging EMCal
 - outer barrel: HCal
 - h-endcap: finely segmented calorimeter

ePIC Collaboration

12th Beam Telescopes and Test Beams Workshop

electrons

dRICH

- Dual-radiator RICH (dRICH) is a compact and cost-effective solution for broad momentum coverage at forward rapidity
 - 3 60 GeV/*c* and $1.5 < \eta < 3.5$
- 6 open sectors with large mirrors for Cherenkov light outward reflection
 - Light generated from particles passing through aerogel (n $^{\sim}$ 1.02) and C_2F_6 (n $^{\sim}$ 1,0008)
- Photosensors based on SiPM:
 - 3x3 mm² pixels
 - 0.5 m² per sector

Marco Giacalone – INFN Bologna

Photo-detection unit (PDU)

- PDUs are the fundamental detection components of our prototype
- 8x8 SiPM matrices (Hamamatsu*)
 → 256 channels in total per PDU
- Sub-zero operating temperatures reached with 2 Peltier modules
- Lightweight aluminum structure hosts front-end electronics based on ALCOR chips

ePIC Collaboration

12th Beam Telescopes and Test Beams Workshop

Readout prototype box

- 8 PDUs operated for the readout prototype:
 - Design used for test beam contains 4 incomplete PDUs at the corners
 - Total of 1280 channels
- Box attached to beam receiving side of dRICH prototype

Test beam setup (October 2023)

Test beam setup (October 2023)

- dRICH prototype comprises:
 - Readout box
 - Gas chamber
 - Two mirrors focusing Cherenkov γ
 - Triggerless system (continuous readout) → scintillator for timing
- Data acquired via FPGAs connected to front-end
 - 1 gigabit ETH connection to DAQ machine
- Masterlogic boards used for auxiliary electronic control
- CERN-PS Beam settings could be tweaked to change particle abundances

ePIC Collaboration

Cherenkov ring fitting

- 2D fit function:
 - signal: circle with gauss smearing
 - background: flat
- χ^2 minimization applied:
 - integrates function to properly consider SiPM active area
 - proper errors computation

Fit performed on full run data

				· · ·
Nsig	=	23.6048	+/-	0.0154101
X0	=	2.87125	+/-	0.00255149
ΥO	=	1.18834	+/-	0.00193679
R	=	73.0013	+/-	0.00166626
sigmaR	=	1.88591	+/-	0.00123206
Nbkg	=	10.3538	+/-	0.0133316 🥠

A preliminary ML alternative for reconstruction

As a possible alternative to standard methods a machine learning algorithm was explored

The ring pattern recognition of hits is promising \rightarrow background events are correctly discarded

More complete studies will be performed to understand implementation feasibility

Extraction of n_v and MC comparison

- n_{γ} extracted event-by-event within 3σ of the globally-fitted ring radius
- Gaussian fit performed on n_v distribution

 $\langle n_{\gamma} \rangle = 9.056 \pm 0.025$

80

60

100

 $number \ of \ hits \ within \ 3\sigma_{R} \\ 12^{th} \ Beam \ Telescopes \ and \ Test \ Beams \ Workshop$

20

40

best fit

Extraction of n_v and MC comparison

- n_v extracted event-by-event within 3σ of the globally-fitted ring radius
- Gaussian fit performed on n, distribution

 $(n_{v}) = 9.056 \pm 0.025$

- Fast MC estimates with 8 full PDUs show >18 photons for aerogel \rightarrow will be acknowledged in 2024 test beam
- A study with GEANT4 with the ePIC SiPM parameters might be introduced in the future

Results of test beam at CERN PS

- Data were collected from CERN Proton-Synchrotron facility \rightarrow T10
- Accumulated data plot shows two rings from Cherenkov light coming from the two different radiators

Results of test beam at CERN PS

- Data were collected from CERN Proton-Synchrotron facility \rightarrow T10
- Accumulated data plot shows two rings from Cherenkov light coming from the two different radiators
- Analysis is performed on aerogel produced photons

Marco Giacalone – INFN Bologna 16

Results of test beam at CERN PS

- Data were collected from CERN Proton-Synchrotron facility \rightarrow T10
- Accumulated data plot shows two rings from Cherenkov light coming from the two different radiators
- Analysis is performed on aerogel produced photons
- Fit obtained radii show a distribution from which particles species can be distinguished \rightarrow protons, kaons and π peaks

Measurement of single photon resolution

- Radius distribution can be projected in slices of n_v
- A Gaussian fit of the projection let us find the radius resolution per number of participating photons

 The resolution per single photon is then computed with one last n_y dependent fit

 σ_{SPR} = 2.141 \pm 0.014 mm

 n_{γ}

Summary

- A full data acquisition test under radiation on a dRICH prototype was performed in October 2023 → the setup did not show any radiation related issues and triggerless data were recorded smoothly by our DAQ
- Double rings were seen in the accumulated data plots → coherent with dual radiator configuration of our detector
- A standard method for the ring reconstruction has been used, but a ML algorithm has also been studied for the ring reconstruction → possible implementation with future results
- Rings distributions show a clear distinction between protons, kaons and π peaks
- The resolution per single participating photon has been computed: 2.141 ± 0.014 mm
- Simulations show >18 hits per event for 2024 test beam using 8 full PDUs readout system

Thank you for your **epic** attention

Marco Giacalone for the ePIC Collaboration

mgiacalo@bo.infn.it