Study of the ATLAS Tile Calorimeter response to beams of particles using Phase-II upgrade readout

Stergios Kazakos

(On behalf of the ATLAS Tile Calorimeter Upgrade Team)

Michigan State University

12th Beam Telescopes & Test Beams Workshop 15 - 04 - 2024

ATLAS Tile calorimeter

- The ATLAS **Tile calorimeter** (TileCal) is the hadronic calorimeter surrounding the electromagnetic calorimeter (ECal).
 - Primary purpose to measure jet energy & assist in the $E_{\rm T}^{\rm miss}$ reconstruction.
- \star It is segmented into:
 - Long Barrel (LB) region with coverage of |η| < 1.0 containing LBA & LBC partitions.
 - Extended Barrel (EB) region with coverage of $0.8 < |\eta| < 1.7$ containing EBA & EBC partitions.
- **64 modules** in each partition vertical to the beam pipe achieving a 2π coverage.
 - 48 photomultiplier tubes (PMTs) in each module.
 - Succession of 3 mm plastic scintillator plates + 14 mm steel absorber plates.
- The light produced in the **scintillators** by the particles transerving the calorimeter is collected on both sides of the tile.
 - Then transported to the **PMTs** with wavelength shifting (WLS) fibres.

Stergios Kazakos

TileCal in Phase-II upgrade

 \star A number of major upgrades is planned for TileCal (Phase-II upgrade):

- Redesign of electronics (on- & off- detector) for improved radiation hardness, data acquisition & speed.
- Modules will be organised in 4 Mini Drawers w/ independent High-Voltage (HV) system.
- New power supply systems to comply with the higher radiation requirements.
- Replacement of PMTs and crack scintillators damaged by radiation.
- ★ New TileCal electronics are expected to have:
 - Lower latency,
 - Higher frequency (40 MHz),
 - **Fully digital integration** with the ATLAS trigger system.
 - ⇒ Digitised signal will be stored & redirected to Level-0 (L0) trigger with a 40 MHz rate (increased from 100 kHz).

3

BTTB12 | 15-04-24

Stergios Kazakos

Test-beam setup: H8 beam line

★ Located at the Super Proton Synchrotron (SPS) North Area - H8 beam facility at CERN.

Secondary beams with energies from 10 to 350 GeV:

- Beryllium as primary target.

 \star Tertiary beams:

- **Polyethylene** + **lead** absorber as secondary target.

Beam line elements:

- **3 Cherenkov counters** (Ch1, Ch2 & Ch3):
 - ⇒ Separate $p/K/\pi/e$ for low beam energies (< 50 GeV).
- **2 trigger scintillators** (S1 & S2):
 - ⇒ Used in coincidence to trigger the data acquisition and provide the trigger timing.
- 2 wire chambers (BC1 & BC2):
 - \Rightarrow Transverse beam profile monitoring.

Stergios Kazakos

Test-beam setup: Module placement

Spare TileCal modules equipped with Phase-II **upgrade electronics** together with modules equipped with the **legacy system** were tested in several test-beam campaigns at SPS during **2015-2018** and **2021-2023**.

- **X** Modules from both sides of the detector (positive & negative η):
 - 3 longitudinal layers (A, BC or B and D) per module
 - **23 cells** in LB modules, **14 cells** in EB modules (+4 special purpose cells E1-E4)
 - Granularity (in Δη x Δφ): **0.1 x 0.1** (A- & BC/B-layer) & **0.2 x 0.1** (D-layer)
- Modules exposed to different particle types (e/μ/h) and energies, at different incident angles.
 - Upgrade SD inserted in the EBC & LBC modules from 2022 TBs onwards.
 - EBC module placed on top of LBC module.
 - Total energy is summed in the 3 modules (LBA, LBC & EBC).

Stergios Kazakos

Test-beam setup: On-detector electronics

 \star 4 Mini Drawers (MDs) each with independent readout and power supplies.

12 PMTs & 12 Front-End Boards (FEBs) in each MD reading 6 Tile cells (called FENICS).
 The FENICS card performs signal shaping and amplification.

 \star 1 x MainBoard (MB): digitises the input from the FEBs, operation of front-end boards.

 \star 1 x DaughterBoard (DB): high speed link of data with the off-detector electronics.

🖈 1 x High Voltage distribution board.

2 x Low Voltage Power Supply bricks: one for each independent side.

Currently testing new DB (v6.4) and focusing on migration to Alma9 and TDAQ11.

Stergios Kazakos

Test-beam setup: Off-detector electronics

★ Tile PPr (Preprocessor):

- Located off-detector away from the scanning table.
- Buffers data from all MDs in pipelines.
- Evaluates signal at the full 40 MHz rate.
- Distributes the system clock, detector control and configuration information.
- Provides reconstructed energy per cell to the TDAQi for every bunch crossing.
- TDAQi calculates trigger objects and interfaces with trigger and ATLAS TDAQ by sending accepted data via the FELIX (Front End Link eXchange).

Stergios Kazakos

Test-beam strategy

X Very rich test-beam program during the years **2015-2018** & **2021-2023**, plan in place for 2024 TB.

- Increased number of analysers, opportunity to cover various topics.

X Close collaboration with **MC experts** to improve the modeling of particles interacting with the detector in **Geant4**.

X Studying the response of different beam types with the new electronics (usually needed to isolate them first):

Hadron beams	Electron beams	Muon beams
$\Rightarrow The role of the hadron calorimetry is to measure the energy and the angle of$	\Rightarrow Crucial to accurate model electrons that are often created inside the hadronic	\Rightarrow Well-understood interaction of muons with matter.
$\Rightarrow Identify pions, kaons and protons in$	showers.	- Ionisation as the dominant energy-loss process.
hadronic showers & compare their measured energy to the predictions from Geant4 .	⇒ Useful to verify the linearity of the response vs energy (and in general the uniformity of the detector).	⇒ Study of the detector response using high energy muons traversing the entire module for
- Taking care of particle overlap.	\Rightarrow Validate if the electromagnetic (EM)	different incident angles.
\Rightarrow Study their response and resolution to validate and improve their modeling in	scale is set correctly by measuring electron signal at known energies.	⇒ Useful to check the equalisation of the cell response verifying the

Stergios Kazakos

the simulation.

BTTB12 | 15-04-24

performance of new electronics.

Particle identification in test-beam data

 \star A common issue when trying to study a specific particle type could be its overlap with other particles:

- Common overlap for $e-\pi \& \pi-p/K$.

 \star One of the strategies is to use **Cherenkov** counters to separate them.

There the contract of the term of ter

Stergios Kazakos

Particle identification in test-beam data

- Another technique for particle separation is through topological analysis in the C-space (using C_{tot} & C_{long} variables) (sometimes used together with Cherenkovs).
 Mostly useful for e-π separation.
 - Performs better with either elliptical or diagonal cuts.
- $\star C_{long}$: sum of energy deposited in the targeted cell + its neighbouring ones.
 - Index i running over the A- and BC/B-layers (excluding D-cells).
 - Index j running over the 3 cells of each layer.

- E_c is the energy in cell c.
- N_{cell} = 24 stands for the total number of cells considered (all layers).
- Exponent **α** = **0.6** optimised for better **e-h** separation.

Stergios Kazakos

Hadron analysis: Response & resolution

Stergios Kazakos

Electron analysis: Linearity & EM scale validation

X Electron response validated with MC for several energies (20, 50, 100 GeV), good agreement with simulation.

Setting of the **electromagnetic (EM) scale** is validated if the response is close to the beam energy (nominal value is 1.05).

 \star Validated the **linearity of the response** vs E_{beam} .

Muon analysis: Detector response uniformity

- Showing results of muon runs with energy **160 GeV** at an incident angle of **-90°** transversing the modules.
 - \Rightarrow Interested in the energy loss per unit distance (dE/dl) for each cell.
- Comparing the dE/dl values between experimental and simulated data using the ratio:

	Layer	Mean	Uncertainty
$R = \frac{\langle dE/dl \rangle_t^{Data}}{\langle dE/dl \rangle_t}$	А	1.014	0.005
$\frac{1}{\langle dE/dl \rangle_t^{MC}}$	BC	0.998	0.005
	D	1.004	0.007

\star Fitting to a 0th-order polynomial to get the mean values of dE/dl for each layer (red lines).

Summary

X Studies related to the ATLAS TileCal Phase-II upgrade are currently ongoing:

- R&D phase is finished, initial tests demonstrate good performance.
- All on- and off-detector electronics will be replaced.
- New electronics are being tested to cope with the large pileup and higher radiation of HL-LHC.

 \star Test beams are conducted on a regular basis at the H8 line (SPS, CERN):

- Five modules are tested.
- Rich plan completed for 2015-2018 & 2021-2023, TBs also planned for 2024.
- Aim to study the response of new electronics for different particle beams (first tests with Upgrade SDs).

X Results with **hadrons**, **electrons** and **muons** discussed:

- Results with Legacy SD look as expected & in line with previous measurements.
- Studies with the Upgrade SD are ongoing.

Hadron analysis: Hadronic shower transverse shape

Hadron analysis: Hadronic shower longitudinal shape

- ★ Studied hadron energy loss vs distance travelled for different E_{beam} .
- ★ Results with Sep 2023 data with the beam hitting at -90°.
 - Beam hitting first LBC A-layer cells and then propagating to LBA. (LBC: cells 1-10, LBA: cells 11-17)
- Comparison of the shower profile in data vs MC (Geant4).
- Simulated data (MC) need to have similar proportion of protons/pions/kaons as in experimental data:
 - Cherenkov counters crucial for this task.

BTTB12 | 15-04-24

Stergios Kazakos

Hadron analysis: Hadronic response in data & MC

- Simulation of different types of hadrons (**kaons/pions/protons**) for a broad range of E_{beam} (from 10 GeV to 180 GeV).
- Currently trying to understand the dip in the response for experimental hadron data at higher eta values.

BTTB12 | 15-04-24

Stergios Kazakos

Electron analysis: Results from 2021 & 2023 (response linearity)

Electron analysis: Results from 2021 & 2023 (response uniformity)

Stergios Kazakos

Muon analysis: Results from 2022

Stergios Kazakos