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ATLAS Tile calorimeter

* The ATLAS Tile calorimeter (TileCal) is the hadronic calorimeter surrounding
the electromagnetic calorimeter (ECal).

- Primary purpose to measure jet energy & assist in the E,™** reconstruction.

* Itis segmented into:

- Long Barrel (LB) region with coverage of Inl <1.0
containing LBA & LBC partitions.

- Extended Barrel (EB) region with coverage of 0.8 < Inl <1.7
containing EBA & EBC partitions.

X 64 modules in each partition vertical to the beam pipe achieving a 2m coverage.

- 48 photomultiplier tubes (PMTs) in each module.

- Succession of 3 mm plastic scintillator plates + 14 mm steel absorber plates.

K The light produced in the scintillators by the particles transerving the
calorimeter is collected on both sides of the tile.

- Then transported to the PMTs with wavelength shifting (WLS) fibres.
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TileCal in Phase-II upgrade

K A number of major upgrades is planned for TileCal (Phase-II upgrade):

- Redesign of electronics (on- & off- detector) for improved radiation hardness, data acquisition & speed.
- Modules will be organised in 4 Mini Drawers w/ independent High-Voltage (HV) system.

- New power supply systems to comply with the higher radiation requirements.

- Replacement of PMTs and crack scintillators damaged by radiation.

* New TileCal electronics are
expected to have:

‘ HiLumi ’
LARGE HADRON COLLIDER

- Lower latency,
- Higher frequency (40 MHz),
- Fully digital integration with
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Test-beam setup: H8 beam line

K Located at the Super Proton Synchrotron (SPS) North Area - H8 beam facility at CERN.

Scanning
Table

Secondary Target

Not drawn to scale

* Secondary beams with energies
from 10 to 350 GeV:

- Beryllium as primary target.

* Tertiary beams:

- Polyethylene + lead absorber
as secondary target.

Beam line elements:

- 3 Cherenkov counters (Ch1, Ch2
& Ch3):
= Separate p/K/mt/e for low beam
energies (<50 GeV).
- 2 trigger scintillators (S1 & S2):

= Used in coincidence to trigger
the data acquisition and
provide the trigger timing.

- 2 wire chambers (BC1 & BC2):

= Transverse beam profile
monitoring.
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Test-beam setup: Module placement

* Spare TileCal modules equipped with Phase-II upgrade electronics together with modules equipped with the legacy system
were tested in several test-beam campaigns at SPS during 2015-2018 and 2021-2023.

positive eta negative eta

K Modules from both sides of the detector (positive & negative 1):

- 3 longitudinal layers (A, BC or B and D) per module

LEGAGYSD s - 23 cells in LB modules, 14 cells in EB modules (+4 special

UPGRADE SD — purpose cells E1-E4)
= UPGRADE SD

LEGACY SD LEGACY SD

+90°

- Granularity (in An x Ag):
0.1 x 0.1 (A- & BC/B-layer) & 0.2 x 0.1 (D-layer)

sgesmm W00 O1 02 03 o4 05 gs o7 98 09 t0 oM o K Modules exposed to different particle types (e/p/h) and
7 / K , , , I 7 L 7 7 13 . . . .
Po jor ; fey A% N AL e A e energies, at different incident angles.
BC1 |BC2 |BC3 [BC4 'BCS /BC6 wc7 yos| || 14 ) .
J 4 A A A A A e T T - Upgrade SD inserted in the EBC & LBC modules from 2022
T A A K P P PO ISP | 115 .-'B13 | .- - Bt
| , 7 !; CoE T T T e TBs onwards.
1 ’ ‘¢ . . S /// P - = o L= —= sl ///’1,6
2080 mm A ,‘AZAAS ,(A4/r"A5 ,{AG,{AK/}/AS//’KAS/) ,{2\/10/ “ Ez/ Aﬁ’m’a/,k’m:t/,%Als/,/}l/ 61/6,//

- EBC module placed on top of LBC module.

“ LBA/LBC cells - " EBCcells

beam axis

- Total energy is summed in the 3 modules (LBA, LBC & EBC).

>
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Test-beam setup: On-detector electronics

X 4 Mini Drawers (MDs) each with independent readout and power supplies.

X 12 PMTs & 12 Front-End Boards (FEBs) in each MD reading 6 Tile cells (called FENICS). WEUCHIETSEES
- The FENICS card performs signal shaping and amplification.

Adder Base
Board

X 1x MainBoard (MB): digitises the input from the FEBs, operation of front-end boards.

* 1x DaughterBoard (DB): high speed link of data with the off-detector electronics.

K 1x High Voltage distribution board. —

Main Board

K 2 x Low Voltage Power Supply bricks: one for each independent side.

/ Off-detector electronics \

/ On-detector electronics \

Signal Control,
conditioning Power and
Digitizer

(@D e
L(FENICS) JhMainboar«J

* Currently testing new DB (v6.4)

and focusing on migration to
Alma9 and TDAQ11.
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Test-beam setup: Off-detector electronics

* Tile PPr (Preprocessor):
- Located off-detector away from the scanning table.
- Buffers data from all MDs in pipelines.
- Evaluates signal at the full 40 MHz rate.

- Distributes the system clock, detector control and configuration information.

- Provides reconstructed energy per cell to the TDAQI for every bunch crossing.

* TDAQI calculates trigger objects and interfaces with trigger and ATLAS TDAQ by
sending accepted data via the FELIX (Front End Link eXchange).

1
1
/ On-detector electronics \ ' / Off-detector electronics /\
|
1
1
1

signal Control,

conditioning Power and

Digitizer

W" (opt
—{ > ———>{ADC - Format =
L(FENICS) JhMainboach o 3
40 MHz Dlgltaljw
o) ) Y,
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Test-beam strategy

* Very rich test-beam program during the years 2015-2018 & 2021-2023, plan in place for 2024 TB.

- Increased number of analysers, opportunity to cover various topics.

¥ Close collaboration with MC experts to improve the modeling of particles interacting with the detector in Geant4.

* Studying the response of different beam types with the new electronics (usually needed to isolate them first):

Electron beams

Muon beams

= The role of the hadron calorimetry is to
measure the energy and the angle of
isolated hadrons.

= Identify pions, kaons and protons in
hadronic showers & compare their
measured energy to the predictions
from Geant4.

- Taking care of particle overlap.

= Study their response and resolution to
validate and improve their modeling in
the simulation.

= Crucial to accurate model electrons that
are often created inside the hadronic

showers.

= Useful to verify the linearity of the
response vs energy (and in general the
uniformity of the detector).

= Validate if the electromagnetic (EM)
scale is set correctly by measuring
electron signal at known energies.

= Well-understood interaction of
muons with matter.

- Ionisation as the dominant
energy-loss process.

= Study of the detector response
using high energy muons
traversing the entire module for
different incident angles.

= Useful to check the equalisation
of the cell response verifying the
performance of new electronics.
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Particle identification in test-beam data

K A common issue when trying to study a specific particle type could be its overlap with other particles:

- Common overlap for e-nt & m-p/K.

K One of the strategies is to use Cherenkov counters to separate them.

K Cherenkovs work best for particles with E, <50 GeV & need to be properly tuned.
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Particle identification in test-beam data

X Another technique for particle separation is through topological analysis in the 2 e E;

C-space (using C, & C, _variables) (sometimes used together with Cherenkovs). Clong= Z Z E

tot long i=1 j=1 *~beam
- Mostly useful for e-mt separation.
2
- Performs better with either elliptical or diagonal cuts. . (E o— Z E!IN cell)
Cox= -

* Clong: sum of energy deposited in the targeted cell + its neighbouring ones. ot Z E; ZC: N

- Index i running over the A- and BC/B-layers (excluding D-cells). ‘

. . * definitions might change slightly
- Index j running over the 3 cells of each layer. according to the particle type

g 08T T 1 T T T 7 T T T 1 T T T T T T T ™ 12] L L B B B e B
< ' S 500 * : energy spread
o El tot
> ectron o
L reSPONSe deposited in the
400 p calorimeter cells.

300 - EC is the energy in cell c.

(Gaussian
fit close to
the peak)

200 - Ncell = 24 stands for the
total number of cells

considered (all layers).

100

II\I‘IIIIlIJI\lIIIIlIIIIlI\

l__l_l_l_l_l_‘llll\llll\\lllllll"l -. ]

OAII\I‘IIIIlI!I\lIIIIlIIIIIIL

- Exponent a = 0.6
optimised for better e-h
separation.

P S b Lo b Ly 1 (I
12 14 16 18 20 22 24 26 28 30

E™Y [GeV]
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Hadron analysis: Response & resolution
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Electron analysis: Linearity & EM scale validation

X Electron response validated with MC for several energies (20, 50, 100 GeV), good agreement with simulation.
* Setting of the electromagnetic (EM) scale is validated if the response is close to the beam energy (nominal value is 1.05).
X Validated the linearity of the response vs E

beam”

* Current results are

T T T T T T T T T T T T T T T T T T T T | gyl FT 5 T | ¥ T L T T T T |
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beam of 20°. 3 C i : ( e Simulation 7 %_ 1.02 -

, 2 0.2F 4 u ]
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Muon analysis: Detector response uniformity

* Showing results of muon runs with energy 160 GeV at an incident
angle of -90° transversing the modules.

—_
—_

ATLAS Preliminary
Tile Calorimeter

;,H-+++

Data
MC

t

(dE/dl)
(dE/dl)

NIARARARRRIN A A

= Interested in the energy loss per unit distance (dE/dl) for each cell.

——
+
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* Comparing the dE/dl values between experimental and simulated 1
data using the ratio:

——
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Summary

% Studies related to the ATLAS TileCal Phase-II upgrade are currently ongoing:
- R&D phase is finished, initial tests demonstrate good performance.
- All on- and off-detector electronics will be replaced.

- New electronics are being tested to cope with the large pileup and higher radiation of HL-LHC.

X Test beams are conducted on a regular basis at the HS8 line (SPS, CERN):

- Five modules are tested.
- Rich plan completed for 2015-2018 & 2021-2023, TBs also planned for 2024.

- Aim to study the response of new electronics for different particle beams (first tests with Upgrade SDs).

* Results with hadrons, electrons and muons discussed:
- Results with Legacy SD look as expected & in line with previous measurements.

- Studies with the Upgrade SD are ongoing.
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Hadron analysis: Hadronic shower transverse shape
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Hadron analysis: Hadronic shower longitudinal shape
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Hadron analysis: Hadronic response in data & MC

K Simulation of different types of Hadrons (TB data) Kaons (MC simulation)
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Electron ana1y515° Results from 2021 & 2023 (response linearity)
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Electron analysis: Results from 2021 & 2023 (response uniformity)

T I T T I I I
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Muon analysis: Results from 2022

Data
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K Results from LBC module with the Upgrade SD installed.

Tile Calorimeter
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K Great response uniformity (investigating tension w/ BC-6 cell). Alayer
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K Offset of about ~5% similar to what seen in other particle types.

- Similar offset seen in 2023 muon data.
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